
AADS: AADL Simulation and Performance Analysis in SystemC

Roberto Varona-Gómez, Eugenio Villar

{roberto, villar}@teisa.unican.es

GIM - TEISA - University of Cantabria – Spain

http://www.teisa.unican.es/

Abstract

AADS supports the performance analysis of AADL

specifications throughout the refinement process from the

initial system architecture till the complete application and

execution platform are developed.

1. Introduction

Nowadays, embedded systems must support the deployment

of heterogeneous applications within heterogeneous

architectures. In most cases, the execution platform is not

fixed and must be designed and optimized in conjunction

with the application software. Therefore, early estimation of

the system performance on the executive platform, under

real-time constraints, is desirable. Such analysis requires a

unified model of the application and the architecture, and an

effective means to define the mapping of application

functions onto architecture resources and services. AADL

[1] provides such a modelling framework.

There is a commonly recognized need for new development

frameworks that allow designers to perform efficient

exploration of design alternatives and analyze system

properties throughout the design cycle. Some system

properties can be obtained by static analysis. Many other

properties can only be obtained through simulation. In any

case, system simulation is needed for performance analysis

under real execution conditions. System simulation enables

the correct dimensioning of the system, detection of locks,

missed deadlines and other potential problems raised by the

complex interaction among components that can be found

in a real system. The earlier all those problems are detected,

the less the associated cost of correcting them [2].

SystemC has become the standard language for modelling

and simulation of HW/SW embedded systems [3].

In this paper, AADS1, an AADL simulation and

performance analysis framework, is presented. The tool can

support prototype-based design allowing the functional and

non-functional verification of the system while it is being

refined until the final implementation. Based on SystemC,

the framework supports the seamless integration of any HW

component and an easy optimization of the executive

platform.

1
 This work has been partially supported by the Spanish
MICyT through the ITEA 05015 SPICES Project and the

TEC2008-04107 project.

2. AADS

AADS [4] is written in Java and it has been developed as a

plug-in [5] of Eclipse [6].

AADS enables the modelling of a subset of AADL for

purposes of implementation and simulation. The starting

point of the simulator is a functional AADL specification

without detailed code. For each component, the

corresponding timing constraints are defined. This initial

AADL specification supports the verification of the global

performance constraints of the system based on the specific

timing constraints of the different components. The AADL

model is parsed using AADS and a model suitable to be

simulated with SCoPE [7] is produced, in order to check if

the AADL constraints are fulfilled.

As the design process advances and, on the one hand, the

actual functionality is attached to the software components

using the corresponding source code and, on the other, the

functionality is mapped onto specific platform resources, a

more accurate performance estimation is performed. These

refined properties will be added to the AADL model and a

new model is generated by AADS. By comparing (e.g.

using assertions) the initial timing constraints with these

refined timing estimations, it is possible to verify the non

functional correctness of the design process in any

refinement step. The corresponding methodology is shown

in Fig. 1.

Figure 1: Refinement of AADL

3. Translation from AADL

AADL enables the specification of both the architecture and

functionality of an embedded real-time system. AADS

translates both to SystemC (see Fig. 2). It parses the AADL

model so the functionality is translated to an equivalent

POSIX [8] model and the architecture is represented in

XML.

The functional elements are translated as follows:

Threads. An AADL thread translates seamlessly into a

POSIX thread.

Periodic threads. Dispatch_Protocol and Period are set.

The source code of the thread is put into an infinite loop. It

waits to repeat the loop for exactly the time specified.

Port connections translate into message queues, signals and

global variables:

Message queues. An AADL event data port connection

between threads translates into a POSIX message queue

between threads. Properties Queue_Size and

Queue_Processing_Protocol are used.

Signals. An AADL event port connection between threads

translates into a sending of POSIX signals between threads.

The signals used are the user-definable real-time signals.

Global variables. An AADL data port connection between

threads translates into a global variable between threads.

This translation is suitable for immediate data port

connections.

The AADL properties are translated as follows:

Scheduling_Policy and Priority of threads. An AADL

property set called UC with two properties

POSIX_Scheduling_Policy and Priority has been defined.

Compute_Execution_Time (min, max). The minimum

causes the call to a function that consumes that time. The

maximum uses a timer whose expiry triggers one of the last

real-time signals to be sent and a function to be called that

lowers the priority of the thread, and waits for a while

before restoring the initial priority.

Names. Properties Activate_Entrypoint and Source_Text

are used.

Initialize / Finalize_Entrypoint. These properties

determine the routine called at the start/end of the start

routine of the corresponding thread.

Initialize / Finalize_Execution_Time (min, max). The

minimum causes the call to a function that consumes that

time. It checks the maximum time, to see if this amount of

time has elapsed and returns if it has been.

The issues related to the subprograms are the following:

Subprogram. An AADL subprogram translates into a

routine.

Subprogram calls. Local calls and remote client-server

calls translate into calls from one routine to another.

Actual_Subprogram_Call is used.

Subprogram parameters. AADL parameters translate into

parameters of the subprogram by value or reference.

AADL data are managed as follows:

Data type. Simple independent AADL data give rise to a

data type. Source_Data_Size is used.

Simple Data. A simple AADL data subcomponent of a

thread or a process gives rise to a simple global variable.

Composite Data. This data generate a C++ class of data

with its methods and/or member data. The composite data

subcomponents of a thread or a process give rise to a global

variable

The hardware architecture is structured through the XML

file generated by AADS. It is used as part of the

configuration parameters of SCoPE and is divided into:

HW_Platform. Any AADL implementation of a processor,

memory, bus or device must be specified in the

HW_Components subsection. Properties Assign_Byte_Time,

Read_Time, Write_Time, Word_Coun, Word_Size and

Memory_Protocol are used. The HW_Architecture and

Computing_groups subsections use Base_Address and

requires bus access.

SW_Platform. This section has two subsections:

SW_Components and SW_Architecture.

Application. This section has two subsections:

Functionality and Allocation. Activate_Entrypoint,

Source_Text and Actual_Processor_Binding are used.

Figure 2: Translation with AADS.

4. Conclusion

In this project, we have developed AADS, an AADL

SystemC simulation tool. AADS supports the refinement of

AADL models through performance analysis done with

SCoPE, after translating those models.

The generation of the SystemC model from the AADL

specification is not straightforward. Nevertheless, the

SystemC model generated by AADS is able to capture the

fundamental dynamic properties of the initial system

specification. In this way, AADS supports design space

exploration by refinement of the AADL functionality and

its implementation on an optimized platform.

Future work includes incorporation of AADS features that

appear in the annex behaviour specification and in V2.0 of

the AADL standard.

5. References

[1] SAE: AADL. June 2006, document AS5506/1.

www.sae.org/technical/standards/AS5506/1.

[2] A.D. Pimentel et al.: “A systematic approach to

exploring embedded system architectures at multiple

abstraction levels”, IEEE Transactions on Computers, 2006.

[3] H. Posadas et al.: RTOS modeling in SystemC for real-

time embedded SW simulation: A POSIX model. Design

Automation for Embedded Systems. Springer. 2005.

[4] AADS V1.2 UC 2008. www.teisa.unican.es/AADS

[5] P. H. Feiler, A. Greenhouse: OSATE Plug-in

Development Guide. CMU. Pittsburgh. (2006).

[6] The Eclipse Foundation 2009. www.eclipse.org

[7] SCoPE V1.1.0 UC 2009. www.teisa.unican.es/scope

[8] M. González: POSIX tiempo real. UC, Santander 2004.

Acknowledgement

The authors would like to thank their colleagues in the GIM

in the University of Cantabria and their colleagues in the

SPICES project for their assistance.

