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Abstract 

 
AADS supports the performance analysis of AADL 

specifications throughout the refinement process from the 

initial system architecture till the complete application and 

execution platform are developed. 

 

 

1. Introduction 
 
Nowadays, embedded systems must support the deployment 

of heterogeneous applications within heterogeneous 

architectures. In most cases, the execution platform is not 

fixed and must be designed and optimized in conjunction 

with the application software. Therefore, early estimation of 

the system performance on the executive platform, under 

real-time constraints, is desirable. Such analysis requires a 

unified model of the application and the architecture, and an 

effective means to define the mapping of application 

functions onto architecture resources and services. AADL 

[1] provides such a modelling framework.  

There is a commonly recognized need for new development 

frameworks that allow designers to perform efficient 

exploration of design alternatives and analyze system 

properties throughout the design cycle. Some system 

properties can be obtained by static analysis. Many other 

properties can only be obtained through simulation. In any 

case, system simulation is needed for performance analysis 

under real execution conditions. System simulation enables 

the correct dimensioning of the system, detection of locks, 

missed deadlines and other potential problems raised by the 

complex interaction among components that can be found 

in a real system. The earlier all those problems are detected, 

the less the associated cost of correcting them [2]. 

SystemC has become the standard language for modelling 

and simulation of HW/SW embedded systems [3]. 

In this paper, AADS1, an AADL simulation and 

performance analysis framework, is presented. The tool can 

support prototype-based design allowing the functional and 

non-functional verification of the system while it is being 

refined until the final implementation. Based on SystemC, 

the framework supports the seamless integration of any HW 

component and an easy optimization of the executive 

platform. 
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2. AADS 

 
AADS [4] is written in Java and it has been developed as a 

plug-in [5] of Eclipse [6]. 

AADS enables the modelling of a subset of AADL for 

purposes of implementation and simulation. The starting 

point of the simulator is a functional AADL specification 

without detailed code. For each component, the 

corresponding timing constraints are defined. This initial 

AADL specification supports the verification of the global 

performance constraints of the system based on the specific 

timing constraints of the different components. The AADL 

model is parsed using AADS and a model suitable to be 

simulated with SCoPE [7] is produced, in order to check if 

the AADL constraints are fulfilled. 

As the design process advances and, on the one hand, the 

actual functionality is attached to the software components 

using the corresponding source code and, on the other, the 

functionality is mapped onto specific platform resources, a 

more accurate performance estimation is performed. These 

refined properties will be added to the AADL model and a 

new model is generated by AADS. By comparing (e.g. 

using assertions) the initial timing constraints with these 

refined timing estimations, it is possible to verify the non 

functional correctness of the design process in any 

refinement step. The corresponding methodology is shown 

in Fig. 1. 

 
Figure 1: Refinement of AADL 

 

3. Translation from AADL 

 
AADL enables the specification of both the architecture and 

functionality of an embedded real-time system. AADS 

translates both to SystemC (see Fig. 2). It parses the AADL 

model so the functionality is translated to an equivalent 

POSIX [8] model and the architecture is represented in 

XML. 

The functional elements are translated as follows: 



Threads. An AADL thread translates seamlessly into a 

POSIX thread. 

Periodic threads. Dispatch_Protocol and Period are set. 

The source code of the thread is put into an infinite loop. It 

waits to repeat the loop for exactly the time specified. 

Port connections translate into message queues, signals and 

global variables: 

Message queues. An AADL event data port connection 

between threads translates into a POSIX message queue 

between threads. Properties Queue_Size and 

Queue_Processing_Protocol are used. 

Signals. An AADL event port connection between threads 

translates into a sending of POSIX signals between threads. 

The signals used are the user-definable real-time signals. 

Global variables. An AADL data port connection between 

threads translates into a global variable between threads. 

This translation is suitable for immediate data port 

connections. 

The AADL properties are translated as follows: 

Scheduling_Policy and Priority of threads. An AADL 

property set called UC with two properties 

POSIX_Scheduling_Policy and Priority has been defined. 

Compute_Execution_Time (min, max). The minimum 

causes the call to a function that consumes that time. The 

maximum uses a timer whose expiry triggers one of the last 

real-time signals to be sent and a function to be called that 

lowers the priority of the thread, and waits for a while 

before restoring the initial priority. 

Names. Properties Activate_Entrypoint and Source_Text 

are used. 

Initialize / Finalize_Entrypoint. These properties 

determine the routine called at the start/end of the start 

routine of the corresponding thread. 

Initialize / Finalize_Execution_Time (min, max). The 

minimum causes the call to a function that consumes that 

time. It checks the maximum time, to see if this amount of 

time has elapsed and returns if it has been. 

The issues related to the subprograms are the following: 

Subprogram. An AADL subprogram translates into a 

routine. 

Subprogram calls. Local calls and remote client-server 

calls translate into calls from one routine to another. 

Actual_Subprogram_Call is used. 

Subprogram parameters. AADL parameters translate into 

parameters of the subprogram by value or reference. 

AADL data are managed as follows: 

Data type. Simple independent AADL data give rise to a 

data type. Source_Data_Size is used. 

Simple Data. A simple AADL data subcomponent of a 

thread or a process gives rise to a simple global variable. 

Composite Data. This data generate a C++ class of data 

with its methods and/or member data. The composite data 

subcomponents of a thread or a process give rise to a global 

variable 

The hardware architecture is structured through the XML 

file generated by AADS. It is used as part of the 

configuration parameters of SCoPE and is divided into: 

HW_Platform. Any AADL implementation of a processor, 

memory, bus or device must be specified in the 

HW_Components subsection. Properties Assign_Byte_Time, 

Read_Time, Write_Time, Word_Coun, Word_Size and 

Memory_Protocol are used. The HW_Architecture and 

Computing_groups subsections use Base_Address and 

requires bus access. 

SW_Platform. This section has two subsections: 

SW_Components and SW_Architecture. 

Application. This section has two subsections: 

Functionality and Allocation. Activate_Entrypoint, 

Source_Text and Actual_Processor_Binding are used. 

 
Figure 2: Translation with AADS. 

 

4. Conclusion 

 
In this project, we have developed AADS, an AADL 

SystemC simulation tool. AADS supports the refinement of 

AADL models through performance analysis done with 

SCoPE, after translating those models. 

The generation of the SystemC model from the AADL 

specification is not straightforward. Nevertheless, the 

SystemC model generated by AADS is able to capture the 

fundamental dynamic properties of the initial system 

specification. In this way, AADS supports design space 

exploration by refinement of the AADL functionality and 

its implementation on an optimized platform. 

Future work includes incorporation of AADS features that 

appear in the annex behaviour specification and in V2.0 of 

the AADL standard. 
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