
Copyright © 2009 IEEE.

This material is posted here with permission of the IEEE. Such permission

of the IEEE does not in any way imply IEEE endorsement of any of Grupo de

Ingeniería Microelectrónica Universidad de Cantabria's products or

services. Internal or personal use of this material is permitted.

However, permission to reprint/republish this material for advertising or

promotional purposes or for creating new collective works for resale or

redistribution must be obtained from the IEEE by writing to

pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

AADL Simulation and Performance Analysis in SystemC
1

Roberto Varona-Gómez, Eugenio Villar

University of Cantabria, Av. Los Castros s/n, 39005 Santander, Spain

{roberto, villar}@teisa.unican.es

1
 This work has been partially supported by the Spanish MICyT through the ITEA 05015 SPICES Project and the TEC2008-04107 project.

Abstract

Due to the increasing complexity of embedded

systems, new design methodologies have to be adopted,

since traditional techniques are no longer efficient.

Model-based engineering enables the designer to

confront these concerns using the architecture

description of the system as the main axis during the

design cycle. Defining the architecture of the system

before its implementation enables the analysis of

constraints imposed on the system from the beginning

of the design cycle until the final implementation.

AADL has been proposed for designing and analyzing

SW and HW architectures for real-time mission-critical

embedded systems. Although the Behavioral Annex

improves its simulation semantics, AADL is a language

for analyzing architectures and not for simulating

them. In this paper, AADS, an AADL simulation tool is

presented. AADS supports the performance analysis of

the AADL specification throughout the refinement

process from the initial system architecture until the

complete, detailed application and execution platform

are developed. In this way, AADS enables the

verification of the initial timing constraints during the

complete design process.

1. Introduction

Nowadays, embedded systems must support the

deployment of heterogeneous applications within

heterogeneous architectures. In most cases, the

execution platform is not fixed and must be designed

and optimized in conjunction with the application SW.

Therefore, early estimation of the system performance

on the executive platform, under real-time constraints,

is desirable. Such analysis requires a unified model of

the application and the architecture, and an effective

means to define the mapping of application functions

onto architecture resources and services.

AADL [1-3] provides such a modeling framework.

It was developed as a standard of the SAE to enable the

description of task and communication architectures of

real-time, embedded, fault-tolerant, secure, safety-

critical, SW-intensive systems.

There is a commonly recognized need for new

development frameworks that enable designers to

perform efficient exploration of design alternatives and

analyze system properties throughout the design cycle.

Some system properties can be obtained by static

analysis. Many other properties can only be obtained

through simulation. In any case, system simulation is

needed for performance analysis under real execution

conditions. System simulation validates the correct

dimensioning of the system, detection of locks, missed

deadlines and other potential problems raised by the

complex interaction among components that can be

found in a real system. The earlier all those problems

are detected, the smaller the associated cost of

correcting them [4].

Evolutionary prototyping is now becoming a well-

accepted development approach in Model-Driven

Engineering (MDE) [5]. The design flow is based on a

central model that is refined unless it is satisfactory.

Programs can be generated from this model and

constitute intermediate versions of the product. The last

refined model corresponds to the final system. A

prototyping-based design process is of interest to verify

as early as possible, the impact of deployment

decisions, or the use of a particular HW/SW

component in the system.

SystemC has become the standard language for

modeling and simulation of HW/SW embedded

systems [6].

In this paper, AADS, an AADL simulation and

performance analysis framework, is presented. The tool

can support prototype-based design allowing the

functional and non-functional (execution times, power

consumption, etc.) verification of the system while it is

being refined until the final implementation. Based on

SystemC, the framework supports the seamless

integration of any HW component and an easy

optimization of the executive platform.

The contents of the paper are the following. The

next section analyzes the state of the art. In Section 3,

the overall structure and application of AADS is

presented. Then, the SystemC model generation

methodology from AADL is explained. Next, a case

study is presented and finally conclusions are stated.

2. State of the art

Simulation and performance analysis of AADL

models represent an important stage in MDE. Different

approaches address this issue:

ADeS is one of the most powerful simulation tools

yet requires taking into account the environment in

which the system evolves [7].

Another way to tackle the problem is translating

AADL to another language. Cheddar [8] is a set of Ada

packages that enables the design of a new scheduler

and direct interpretation using the Cheddar

environment. The Furness toolset [9] translates models

into the real-time process algebra ACSR to explore the

state space looking for violations of timing

requirements. M. Yassin Chkouri et al. propose in [10]

a translation from AADL models into BIP models to

allow simulation. Ocarina [5] is a tool suite that uses

code generation facilities in Ada and C to analyze the

AADL model. ADAPT [11] translates an AADL

architectural model into a dependability evaluation

model in the form of a Generalized Stochastic Petri Net

(GSPN). T. Abdoul et al. [12] produce an IF timed

automata model which is the entry point of the

validation process, processing it with the IFx

framework. E. Jahier et al. [13] translate the

architecture into a non-deterministic synchronous

model to which the SW components in Scade or Lustre

can be integrated, to simulate it with Lurette. Annex D

of the AADL standard gives guidelines to translate

AADL SW components into source code (C, Ada).

S. Gui et al. [14] use the linear hybrid automata in

the design phase statically to abstract the semantics of

the SW components of AADL explicitly.

M. Brun et al. [15] translate to OIL configuration

code and to C code which is compatible with the

OSEK/VDX RTOS.

After analyzing the state of the art, it appears that

no approach uses SystemC, which is the recognized

standard for modeling HW/SW platforms, with its great

potential for processors, buses, memories and specific

platform HW integration. The aforementioned

solutions cannot model the HW platform so they do not

permit HW/SW codesign. Apart from [15] none of the

approaches models AADL over a RTOS.

SCoPE [16] is a C++ library that extends the

standard language SystemC [17] without modifying it.

It simulates C/C++ SW code based on two different

operating system interfaces (POSIX [18-19] and

MicroC/OS). Moreover, it co-simulates these pieces of

code with HW described in SystemC.

AADS supports AADL simulation in SystemC, thus

allowing modeling the HW platform and permitting

HW/SW codesign. The AADL model is based on

POSIX, therefore supporting many different RTOS.

3. AADS

AADS [20] is written in Java and it was developed

as a plug-in [21] of Eclipse [22].

AADS enables the modeling of a subset of AADL

for purposes of implementation and simulation. The

starting point of the simulator is a functional AADL

specification without detailed code. For each

component, the corresponding timing constraints are

defined. This initial AADL specification supports the

verification of the global performance constraints of

the system based on the specific timing constraints of

the different components. The AADL model is parsed

using AADS and a model suitable for simulation with

SCoPE is produced, in order to check if the AADL

constraints are fulfilled.

As the design process advances and, on the one

hand, the actual functionality is attached to the SW

components using the corresponding source code and,

on the other, the functionality is mapped onto specific

platform resources, a more accurate performance

estimation is performed. These refined properties will

be added to the AADL model and a new model is

generated by AADS. By comparing the initial timing

constraints with these refined, timing estimations, it is

possible to verify the non functional correctness of the

design process at any refinement step.

Fig. 1. Refinement methodology of AADL.

4. Translation from AADL

AADL enables the specification of both the

architecture and functionality of an embedded real-time

system. AADS translates both to SystemC (see Fig. 2).

It parses the AADL model so the functionality is

translated to an equivalent POSIX model and the

architecture is represented in XML [23].

Fig. 2. Translation with AADS.

The functional elements are translated as follows:

Threads. An AADL thread is a concurrent

schedulable unit of sequential execution through source

code and multiple threads represent concurrent

execution paths. A POSIX thread is an execution

thread in a program and an application can have

multiple execution threads running concurrently. An

AADL thread translates seamlessly into a POSIX

thread.

In POSIX, a thread attribute object must be defined

and initialized with the default value for all of the

individual attributes used by a given implementation.

AADS determines how the other scheduling attributes

of the created thread are to be set, that is that the

scheduling policy and associated attributes are to be set

to the corresponding values. Thus AADS can now call

the POSIX function to create a new thread with the

specified attributes. The specified routine is then

launched as a starting routine.

Periodic threads. A thread is periodic if repeated

dispatches occur during a specific time interval. An

AADL periodic thread has its Dispatch_Protocol

property set to Periodic and its Period property set, for

example, to 20 ms.

These two properties are translated putting the

source code of the POSIX thread into an infinite loop.

At the beginning of the loop the current time is

obtained. At the end of the loop the current thread is

suspended until either the time value of the clock

reaches the absolute time specified (the current time

plus the period), or a signal is delivered to the calling

thread and its action is to invoke a signal-catching

function, or the thread is terminated. By doing this it

waits to repeat the loop for exactly the time specified in

the Period property.

Port connections translate into message queues,

signals and global variables:

Message queues. An AADL event data port models

message communication with queuing of messages at

the recipient. Message arrival may cause dispatch of

the recipient and allow the recipient to process one or

more messages. POSIX message queues allow threads

to exchange data in the form of messages. Messages

placed in the queue are stored until the recipient

retrieves them. An AADL event data port connection

between threads translates into a POSIX message

queue between threads.

The attributes of the message queue must be set.

The value of the maximum number of messages is

taken from the AADL property Queue_Size of the

destination port if it exists. The AADL property

Queue_Processing_Protocol is set to FIFO as

corresponds to a message queue. The message queue is

created to both send and receive messages in non-

blocking mode. The thread corresponding to the AADL

source/destination thread of the event data port

connection should add/receive a message of the

specified length to/from the message queue specified

with the priority indicated.

Signals. An AADL event port interfaces for the

communication of events raised by subprograms,

threads, etc. that may be queued. An example of use of

an event port includes alarm communications that may

be queued at the recipient, where the recipient may

process the queue content. A signal is a limited form of

inter-thread communication used in POSIX-compliant

operating systems. Essentially, it is an asynchronous

notification sent to a thread in order to notify it of an

event that occurred. When a signal is sent to a thread,

the operating system interrupts the thread's normal flow

of execution. If the thread has previously registered a

signal handler, that routine is executed. Otherwise, the

default signal handler is executed. An AADL event

port connection between threads translates into a

sending of POSIX signals between threads.

The signals used are the user-definable real-time

signals. The structure type of an object used to

represent sets of signals must be used with the POSIX

functions that initialize and empty a signal set, add a

signal to a signal set and examine and change blocked

signals before creating the thread. The

source/destination POSIX thread that corresponds to

the AADL source/destination thread of the event port

connection sends/waits for the signal (zero timeout for

no blocking if there is no signal received).

Global variables. An AADL data port interfaces

for typed state data transmission among components

without queuing. Data ports are represented by typed

variables in source text. A global variable is a variable

that is accessible in every scope. Global variables are

used extensively to pass information between sections

of code that do not share a caller/called relation like

concurrent threads. An AADL data port connection

between threads translates into a global variable

between threads.

The data type of this global variable is derived from

the type of ports connected. The source/destination

thread that corresponds to the AADL

source/destination thread of the data port connection,

can write/read a value in/from that global variable.

The AADL properties are translated as followed:

Scheduling_Policy and Priority of threads. An

AADL property set called UC with two properties

POSIX_Scheduling_Policy and Priority has been

defined. The first is an enumeration of the values

SCHED_FIFO, SCHED_RR, SCHED_SPORADIC and

SCHED_OTHER, and the second is an integer from 0

to 32. The first is obviously used to set the scheduling

policy of the treads. The second is used with the

appropriate minimum value for the scheduling policy

specified to set the scheduling parameter attributes of

the threads.

Compute_Execution_Time (min, max). The

minimum time causes a call to a function that consumes

that processing time to assure that at least that time is

consumed. This function is adjusted at the beginning of

the application to assure that the exact time is

consumed. Thus the minimum execution time is the

time established by this property for this thread.

The maximum time requires the creation of a timer

that is set with this time until the next expiration of the

timer. Therefore, the timer expires in a maximum time

nanoseconds from when the call is made. When this

timer expires, one of the last real-time signals is sent

and a function called. This function lowers the priority

of the thread and waits for a while before restoring the

initial priority of the thread using the same method.

When the priority of the thread is low, the scheduler

avoids executing the thread and other threads can be

processed. Thus we assure that the maximum time of

execution is the one of this property for this thread.

Names. Property Activate_Entrypoint of a thread is

the name of the C++ function that contains the source

code of that thread. Thus, this is the name of the

function executed as a starting routine when creating

the thread. Source_Text of a thread is the name of the

C++ file containing the source code of that thread.

Initialize / Finalize_Entrypoint. The name of the

routine called at the start/end of the start routine of the

corresponding thread is derived from this property.

Initialize / Finalize_Execution_Time (min, max).

The minimum time causes the call to a function that

consumes that processing time to assure that at least

that time is consumed. It checks the maximum time, to

see if this amount of time has elapsed and return if it

has been.

The issues related to the subprograms are the

following:

Subprogram. An AADL subprogram component

abstraction represents sequentially executable source

text, a callable component, with or without parameters,

that operates on data or provides server functions to

components that call it. A routine is a portion of code

within a larger program, which performs a specific task

and is relatively independent of the remaining code. An

AADL subprogram translates into a routine.

Subprogram calls. In AADL there are two types of

subprogram calls: call sequences and remote calls. The

local call from a thread or from another subprogram

within the same thread to a subprogram is made in

AADL through the sub-clause call and is translated into

direct calls from the thread start routine or from the

routine respectively.

The remote client-server call from a subprogram in

a thread to another subprogram in another thread is

made through the sub-clause call and the property

Actual_Subprogram_Call. This remote call translates

into a call from one routine to another.

Subprogram parameters. A parameter represents

call and return data values or references to data passed

into and out of a subprogram, so it can be by value or

by reference. In AADL the data values are in or out

parameters and references are requires data access.

Connections must be established between the ports of

the thread (or the subprogram) and the ports of the

subprogram. The data type of the AADL out parameter,

if any, determines the data type of the routine; if there

is no out parameter the type is void. Thus, the AADL

parameters translate into parameters of the subprogram

by value or reference. The translation permits data

exchange among subprograms.

AADL data are managed as follows:

Data type. The AADL data abstraction represents

static data and data types. Data component declarations

are used to represent: application data types, the

substructure of data types via data subcomponents

within data implementation declarations and data

instances. In general, a data type defines a set of values

and the allowable operations on those values. Simple

independent AADL data gives rise to a data type.

These data types will be used later to define the type of

a global variable, a message, etc. The name of the data

type can be inferred from the name of the AADL data.

This translation takes into account the property

Source_Data_Size. In the case of data types, it

specifies the maximum size required to hold a value of

an instance of the data type.

Simple Data. A simple AADL data subcomponent

of a thread or a process gives rise to a simple global

variable. The name and type can be inferred from the

name and the AADL data type.

Composite Data. AADL composite data is data that

has one or more subprograms as features and/or one or

more datum as subcomponents. This data generates a

C++ class of data with its methods and/or member data.

The name of the class can be inferred from the name of

the AADL data. The names and types of the methods

and members can be inferred from the AADL

subprograms and data. The composite data

subcomponents of a thread or a process give rise to a

global variable whose type is that class. The name can

be inferred from the name of the AADL data.

The HW architecture is structured through the XML

file generated by AADS. It is used as part of the

configuration parameters of SCoPE and is divided into:

HW_Platform, SW_Platform and Application.

HW_Platform. Any AADL implementation of a

processor, memory, bus or device must be specified

with its category and name in the HW_Components

subsection of HW_Platform. The AADL property

Assign_Byte_Time is used to set the frequency

parameter in the XML file. For memories we use the

properties Read_Time and Write_Time. These

properties have their values in time units (ns, ms and so

on) and must be transformed into MHz. To know the

mem_size of a memory, both Word_Count and

Word_Size AADL properties are required. Finally the

mem_type of a memory is derived from

Memory_Protocol in the AADL model. If the

component is a processor proc_type must be specified.

The HW_Architecture and Computing_groups

subsections of HW_Platform are the next of the XML

file. To know the start_addr of a memory we take the

AADL property Base_Address. The component and

name are inferred from the AADL model. HW

components are grouped by buses as they are

connected to them in AADL through the connections

bus access and the features requires bus access.

SW_Platform. This section has two subsections:

SW_Components and SW_Architecture. This section

takes into account the buses that are defined to make

the equivalent nodes. In this section the operating

systems are specified.

Application. This section has two subsections:

Functionality and Allocation. Filling the Functionality

section is straightforward from the AADL model using

the property of a thread Activate_Entrypoint for the

function and Source_Text for the file. The name is the

same as the one of the thread. For the Allocation

section we need to know the property of a thread

Actual_Processor_Binding, and find out which bus the

processor is bound to and then find out which node that

bus corresponds to. The AADL name of the thread is

used for the name and the component.

5. Case study

The proposed method implemented in AADS has

been tested in a typical case study, the cruise control

presented in Fig. 3, to assure the feasibility of the

translation. Cruise control is a system that

automatically controls the velocity of a motor vehicle.

The driver sets a speed and the system will take over

the throttle to maintain it.

Fig. 3. Cruise control architecture.

The figure shows an AADL model of a cruise

control system, borrowed from the collection of AADL

examples in the OSATE release, but modified to add

some subcomponents. The system component contains

two processors and two memories connected by a bus,

and two SW subsystems. Each of the subsystems is

bound to a separate processor and to a separate

memory. Threads communicate via data ports, event

ports and event data ports. Some data access

connections can be seen too. There are some

subprograms within threads and within data

subcomponents and the call sequences (local and

remote) between them are shown. The parameter

connections between subprograms are shown too. One

subsystem has two processes, one with four threads and

the other with one. The other subsystem contains one

process, with two threads.

The files produced by AADS are compiled with

SCoPE to simulate the model. The results obtained in

the simulation are used to refine the model of the cruise

control as needed. The value of the period of the

threads has been refined to permit the correct

interaction among threads. After trying different values

of periods, 20 ms was found to be the best for all

threads’ interaction. If one thread had a different period

from the other, it had to wait for the first one to

send/get data.

The size of the message queues from the thread

Refspd was refined from a prior value (10) to a value

(200) that avoids missing messages in the reception.

The other message queues did not need to be refined.

Some SW subcomponents such as subprograms,

composite data, etc. have been added to the AADL

model to obtain the desired system performance.

Properties have been defined and their values

refined to achieve this purpose. Minimum and

maximum times of some properties (e. g.

Compute_Execution_Time) were adjusted depending

on the results obtained.

Connections among threads can be varied (and

indeed they were varied) from the different types to

achieve the desired interaction.

The properties of the HW subcomponents were

changed (e. g. as Assign_Byte_Time of the processors

was increased the instructions executed, core and

instruction energies decreased, see Fig. 4) to ascertain

the different behaviors of the system. Thus, the most

suitable HW subcomponent can be chosen for the

system according to the initial constraints.

Fig. 4. Design space exploration results.

6. Conclusions

This paper presents AADS, an AADL SystemC

simulation tool. AADS supports the refinement of

AADL models through performance analysis done with

SCoPE, after translating those models.

The generation of the SystemC model from the

AADL specification is not straightforward.

Nevertheless, the SystemC model generated by AADS

is able to capture the fundamental dynamic properties

of the initial system specification. In this way, AADS

supports design space exploration by refinement of the

AADL functionality and its implementation on an

optimized platform.

Future work includes incorporation of AADS

features that appear in the behavior specification annex

and in V2.0 of the AADL standard.

7. References

[1] SAE: AADL. June 2006, document AS5506/1.

www.sae.org/technical/standards/AS5506/1.

[2] P. H. Feiler, D. P. Gluch, J. J. Hudak: The AADL: An

Introduction. CMU. Pittsburgh. (2006).

[3] P. H. Feiler, J. J. Hudak: Developing AADL Models for

Control Systems: Practitioner’s Guide. CMU. 2006.

[4] A.D. Pimentel et al.: “A systematic approach to exploring

embedded system architectures at multiple abstraction levels”,

IEEE Transactions on Computers, 2006.

[5] J. Hugues, B. Zalila, L. Pautet, F. Kordon: From the

prototype to the final embedded system using the Ocarina

AADL tool suite. ACM TECS, 2008. NY, USA.

[6] H. Posadas et al.: RTOS modeling in SystemC for real-
time embedded SW simulation: A POSIX model. Design

Automation for Embedded Systems. Springer. 2005.

[7] J.-F. Tilman, R. Sezestre, A. Schyn: Simulation of system

architectures with AADL. ERTS2008, Toulouse.

[8] F. Singhoff, A. Plantec: AADL modeling and analysis of

hierarchical schedulers. SIGAda’07, Fairfax, VA, USA.

[9] O. Sokolsky, I. Lee, D. Clark: Schedulability Analysis of

AADL models. IPDPS 2006. Rhodes Island, Greece.

[10] M. Yassin Chkouri, A. Robert, M. Bozga, J. Sifakis:

Translating AADL into BIP – Application of Real-time

Systems. ACESMB 2008. Toulouse, France.

[11] A. E. Rugina et al.: The ADAPT tool: From AADL

architectural models to stochastic Petri Nets through model

transformation. EDCC. 2008. Kaunas, Lithuania.

[12] T. Abdoul, J. Champeau, P. Dhaussy, P. Y. Pillain, J. C.

Roger : AADL execution semantics transformation for formal

verification. ICECCS 2008. Belfast, U. K.

[13] E. Jahier et al.: Virtual execution of AADL models via a

translation into synchronous programs. EMSOFT’07. 2007.

Salzburg, Austria.

[14] S. Gui et al.: Formal schedulability analysis and

simulation for AADL. ICESS2008. Chengdu, China.

[15] M. Brun, J. Delatour, Y. Trinquet: Code generation from

AADL to a RTOS: an experimentation feedback on the use of

model transformation. ICECCS. 2008. U. K.

[16] SCoPE V1.0.0 UC 2008. www.teisa.unican.es/scope

[17] David C. Black, Jack Donovan: SystemC: From the

ground up. Kluwer Academic Publishers. Boston (2004).

[18] M. González: POSIX tiempo real. UC, Santander 2004.

[19] The Open Group: The Single UNIX Specification, V. 2,

1997. www.opengroup.org/onlinepubs/007908799.

[20] AADS V1.2 UC 2008. www.teisa.unican.es/AADS

[21] P. H. Feiler, A. Greenhouse: OSATE Plug-in

Development Guide. CMU. Pittsburgh. (2006).

[22] The Eclipse Foundation 2009. www.eclipse.org

[23] W3C: Extensible Markup Language (XML) W3C

Recommendation (2006). www.w3.org/TR/REC-xml/

