
Copyright © 2009 IEEE.    

 

This material is posted here with permission of the IEEE. Such permission  

of the IEEE does not in any way imply IEEE endorsement of any of Grupo de 

Ingeniería Microelectrónica Universidad de Cantabria's products or  

services.  Internal or personal use of this material is permitted.  

However, permission to reprint/republish this material for advertising or  

promotional purposes or for creating new collective works for resale or  

redistribution must be obtained from the IEEE by writing to  

pubs-permissions@ieee.org.  

 

By choosing to view this document, you agree to all provisions of the  

copyright laws protecting it. 



AADL Simulation and Performance Analysis in SystemC
1
 

 

 

Roberto Varona-Gómez, Eugenio Villar 

University of Cantabria, Av. Los Castros s/n, 39005 Santander, Spain 

{roberto, villar}@teisa.unican.es 

 

 

                                                           
1
 This work has been partially supported by the Spanish MICyT through the ITEA 05015 SPICES Project and the TEC2008-04107 project. 

Abstract 
 

Due to the increasing complexity of embedded 

systems, new design methodologies have to be adopted, 

since traditional techniques are no longer efficient. 

Model-based engineering enables the designer to 

confront these concerns using the architecture 

description of the system as the main axis during the 

design cycle. Defining the architecture of the system 

before its implementation enables the analysis of 

constraints imposed on the system from the beginning 

of the design cycle until the final implementation. 

AADL has been proposed for designing and analyzing 

SW and HW architectures for real-time mission-critical 

embedded systems. Although the Behavioral Annex 

improves its simulation semantics, AADL is a language 

for analyzing architectures and not for simulating 

them. In this paper, AADS, an AADL simulation tool is 

presented. AADS supports the performance analysis of 

the AADL specification throughout the refinement 

process from the initial system architecture until the 

complete, detailed application and execution platform 

are developed. In this way, AADS enables the 

verification of the initial timing constraints during the 

complete design process. 

 

1. Introduction 
 

Nowadays, embedded systems must support the 

deployment of heterogeneous applications within 

heterogeneous architectures. In most cases, the 

execution platform is not fixed and must be designed 

and optimized in conjunction with the application SW. 

Therefore, early estimation of the system performance 

on the executive platform, under real-time constraints, 

is desirable. Such analysis requires a unified model of 

the application and the architecture, and an effective 

means to define the mapping of application functions 

onto architecture resources and services. 

AADL [1-3] provides such a modeling framework. 

It was developed as a standard of the SAE to enable the 

description of task and communication architectures of 

real-time, embedded, fault-tolerant, secure, safety-

critical, SW-intensive systems. 

There is a commonly recognized need for new 

development frameworks that enable designers to 

perform efficient exploration of design alternatives and 

analyze system properties throughout the design cycle. 

Some system properties can be obtained by static 

analysis. Many other properties can only be obtained 

through simulation. In any case, system simulation is 

needed for performance analysis under real execution 

conditions. System simulation validates the correct 

dimensioning of the system, detection of locks, missed 

deadlines and other potential problems raised by the 

complex interaction among components that can be 

found in a real system. The earlier all those problems 

are detected, the smaller the associated cost of 

correcting them [4]. 

Evolutionary prototyping is now becoming a well-

accepted development approach in Model-Driven 

Engineering (MDE) [5]. The design flow is based on a 

central model that is refined unless it is satisfactory. 

Programs can be generated from this model and 

constitute intermediate versions of the product. The last 

refined model corresponds to the final system. A 

prototyping-based design process is of interest to verify 

as early as possible, the impact of deployment 

decisions, or the use of a particular HW/SW 

component in the system. 

SystemC has become the standard language for 

modeling and simulation of HW/SW embedded 

systems [6]. 

In this paper, AADS, an AADL simulation and 

performance analysis framework, is presented. The tool 

can support prototype-based design allowing the 

functional and non-functional (execution times, power 

consumption, etc.) verification of the system while it is 

being refined until the final implementation. Based on 

SystemC, the framework supports the seamless 

integration of any HW component and an easy 

optimization of the executive platform. 



The contents of the paper are the following. The 

next section analyzes the state of the art. In Section 3, 

the overall structure and application of AADS is 

presented. Then, the SystemC model generation 

methodology from AADL is explained. Next, a case 

study is presented and finally conclusions are stated. 

 

2. State of the art 
 

Simulation and performance analysis of AADL 

models represent an important stage in MDE. Different 

approaches address this issue: 

ADeS is one of the most powerful simulation tools 

yet requires taking into account the environment in 

which the system evolves [7]. 

Another way to tackle the problem is translating 

AADL to another language. Cheddar [8] is a set of Ada 

packages that enables the design of a new scheduler 

and direct interpretation using the Cheddar 

environment. The Furness toolset [9] translates models 

into the real-time process algebra ACSR to explore the 

state space looking for violations of timing 

requirements. M. Yassin Chkouri et al. propose in [10] 

a translation from AADL models into BIP models to 

allow simulation. Ocarina [5] is a tool suite that uses 

code generation facilities in Ada and C to analyze the 

AADL model. ADAPT [11] translates an AADL 

architectural model into a dependability evaluation 

model in the form of a Generalized Stochastic Petri Net 

(GSPN). T. Abdoul et al. [12] produce an IF timed 

automata model which is the entry point of the 

validation process, processing it with the IFx 

framework. E. Jahier et al. [13] translate the 

architecture into a non-deterministic synchronous 

model to which the SW components in Scade or Lustre 

can be integrated, to simulate it with Lurette. Annex D 

of the AADL standard gives guidelines to translate 

AADL SW components into source code (C, Ada). 

S. Gui et al. [14] use the linear hybrid automata in 

the design phase statically to abstract the semantics of 

the SW components of AADL explicitly. 

M. Brun et al. [15] translate to OIL configuration 

code and to C code which is compatible with the 

OSEK/VDX RTOS. 

After analyzing the state of the art, it appears that 

no approach uses SystemC, which is the recognized 

standard for modeling HW/SW platforms, with its great 

potential for processors, buses, memories and specific 

platform HW integration. The aforementioned 

solutions cannot model the HW platform so they do not 

permit HW/SW codesign. Apart from [15] none of the 

approaches models AADL over a RTOS. 

SCoPE [16] is a C++ library that extends the 

standard language SystemC [17] without modifying it. 

It simulates C/C++ SW code based on two different 

operating system interfaces (POSIX [18-19] and 

MicroC/OS). Moreover, it co-simulates these pieces of 

code with HW described in SystemC. 

AADS supports AADL simulation in SystemC, thus 

allowing modeling the HW platform and permitting 

HW/SW codesign. The AADL model is based on 

POSIX, therefore supporting many different RTOS. 

 

3. AADS 
 

AADS [20] is written in Java and it was developed 

as a plug-in [21] of Eclipse [22].  

AADS enables the modeling of a subset of AADL 

for purposes of implementation and simulation. The 

starting point of the simulator is a functional AADL 

specification without detailed code. For each 

component, the corresponding timing constraints are 

defined. This initial AADL specification supports the 

verification of the global performance constraints of 

the system based on the specific timing constraints of 

the different components. The AADL model is parsed 

using AADS and a model suitable for simulation with 

SCoPE is produced, in order to check if the AADL 

constraints are fulfilled.  

As the design process advances and, on the one 

hand, the actual functionality is attached to the SW 

components using the corresponding source code and, 

on the other, the functionality is mapped onto specific 

platform resources, a more accurate performance 

estimation is performed. These refined properties will 

be added to the AADL model and a new model is 

generated by AADS. By comparing the initial timing 

constraints with these refined, timing estimations, it is 

possible to verify the non functional correctness of the 

design process at any refinement step. 

 
Fig. 1. Refinement methodology of AADL. 

 



4. Translation from AADL 
 

AADL enables the specification of both the 

architecture and functionality of an embedded real-time 

system. AADS translates both to SystemC (see Fig. 2). 

It parses the AADL model so the functionality is 

translated to an equivalent POSIX model and the 

architecture is represented in XML [23]. 

 
Fig. 2. Translation with AADS. 

The functional elements are translated as follows: 

Threads. An AADL thread is a concurrent 

schedulable unit of sequential execution through source 

code and multiple threads represent concurrent 

execution paths. A POSIX thread is an execution 

thread in a program and an application can have 

multiple execution threads running concurrently. An 

AADL thread translates seamlessly into a POSIX 

thread. 

In POSIX, a thread attribute object must be defined 

and initialized with the default value for all of the 

individual attributes used by a given implementation. 

AADS determines how the other scheduling attributes 

of the created thread are to be set, that is that the 

scheduling policy and associated attributes are to be set 

to the corresponding values. Thus AADS can now call 

the POSIX function to create a new thread with the 

specified attributes. The specified routine is then 

launched as a starting routine. 

Periodic threads. A thread is periodic if repeated 

dispatches occur during a specific time interval. An 

AADL periodic thread has its Dispatch_Protocol 

property set to Periodic and its Period property set, for 

example, to 20 ms.  

These two properties are translated putting the 

source code of the POSIX thread into an infinite loop. 

At the beginning of the loop the current time is 

obtained. At the end of the loop the current thread is 

suspended until either the time value of the clock 

reaches the absolute time specified (the current time 

plus the period), or a signal is delivered to the calling 

thread and its action is to invoke a signal-catching 

function, or the thread is terminated. By doing this it 

waits to repeat the loop for exactly the time specified in 

the Period property. 

Port connections translate into message queues, 

signals and global variables: 

Message queues. An AADL event data port models 

message communication with queuing of messages at 

the recipient. Message arrival may cause dispatch of 

the recipient and allow the recipient to process one or 

more messages. POSIX message queues allow threads 

to exchange data in the form of messages. Messages 

placed in the queue are stored until the recipient 

retrieves them. An AADL event data port connection 

between threads translates into a POSIX message 

queue between threads. 

The attributes of the message queue must be set. 

The value of the maximum number of messages is 

taken from the AADL property Queue_Size of the 

destination port if it exists. The AADL property 

Queue_Processing_Protocol is set to FIFO as 

corresponds to a message queue. The message queue is 

created to both send and receive messages in non-

blocking mode. The thread corresponding to the AADL 

source/destination thread of the event data port 

connection should add/receive a message of the 

specified length to/from the message queue specified 

with the priority indicated. 

Signals. An AADL event port interfaces for the 

communication of events raised by subprograms, 

threads, etc. that may be queued. An example of use of 

an event port includes alarm communications that may 

be queued at the recipient, where the recipient may 

process the queue content. A signal is a limited form of 

inter-thread communication used in POSIX-compliant 

operating systems. Essentially, it is an asynchronous 

notification sent to a thread in order to notify it of an 

event that occurred. When a signal is sent to a thread, 

the operating system interrupts the thread's normal flow 

of execution. If the thread has previously registered a 

signal handler, that routine is executed. Otherwise, the 

default signal handler is executed. An AADL event 

port connection between threads translates into a 

sending of POSIX signals between threads. 

The signals used are the user-definable real-time 

signals. The structure type of an object used to 

represent sets of signals must be used with the POSIX 

functions that initialize and empty a signal set, add a 

signal to a signal set and examine and change blocked 

signals before creating the thread. The 

source/destination POSIX thread that corresponds to 

the AADL source/destination thread of the event port 

connection sends/waits for the signal (zero timeout for 

no blocking if there is no signal received). 

Global variables. An AADL data port interfaces 

for typed state data transmission among components 

without queuing. Data ports are represented by typed 



variables in source text. A global variable is a variable 

that is accessible in every scope. Global variables are 

used extensively to pass information between sections 

of code that do not share a caller/called relation like 

concurrent threads. An AADL data port connection 

between threads translates into a global variable 

between threads. 

The data type of this global variable is derived from 

the type of ports connected. The source/destination 

thread that corresponds to the AADL 

source/destination thread of the data port connection, 

can write/read a value in/from that global variable. 

The AADL properties are translated as followed: 

Scheduling_Policy and Priority of threads. An 

AADL property set called UC with two properties 

POSIX_Scheduling_Policy and Priority has been 

defined. The first is an enumeration of the values 

SCHED_FIFO, SCHED_RR, SCHED_SPORADIC and 

SCHED_OTHER, and the second is an integer from 0 

to 32. The first is obviously used to set the scheduling 

policy of the treads. The second is used with the 

appropriate minimum value for the scheduling policy 

specified to set the scheduling parameter attributes of 

the threads. 

Compute_Execution_Time (min, max). The 

minimum time causes a call to a function that consumes 

that processing time to assure that at least that time is 

consumed. This function is adjusted at the beginning of 

the application to assure that the exact time is 

consumed. Thus the minimum execution time is the 

time established by this property for this thread. 

The maximum time requires the creation of a timer 

that is set with this time until the next expiration of the 

timer. Therefore, the timer expires in a maximum time 

nanoseconds from when the call is made. When this 

timer expires, one of the last real-time signals is sent 

and a function called. This function lowers the priority 

of the thread and waits for a while before restoring the 

initial priority of the thread using the same method. 

When the priority of the thread is low, the scheduler 

avoids executing the thread and other threads can be 

processed. Thus we assure that the maximum time of 

execution is the one of this property for this thread.  

Names. Property Activate_Entrypoint of a thread is 

the name of the C++ function that contains the source 

code of that thread. Thus, this is the name of the 

function executed as a starting routine when creating 

the thread. Source_Text of a thread is the name of the 

C++ file containing the source code of that thread. 

Initialize / Finalize_Entrypoint. The name of the 

routine called at the start/end of the start routine of the 

corresponding thread is derived from this property. 

Initialize / Finalize_Execution_Time (min, max). 

The minimum time causes the call to a function that 

consumes that processing time to assure that at least 

that time is consumed. It checks the maximum time, to 

see if this amount of time has elapsed and return if it 

has been. 

The issues related to the subprograms are the 

following: 

Subprogram. An AADL subprogram component 

abstraction represents sequentially executable source 

text, a callable component, with or without parameters, 

that operates on data or provides server functions to 

components that call it.  A routine is a portion of code 

within a larger program, which performs a specific task 

and is relatively independent of the remaining code. An 

AADL subprogram translates into a routine. 

Subprogram calls. In AADL there are two types of 

subprogram calls: call sequences and remote calls. The 

local call from a thread or from another subprogram 

within the same thread to a subprogram is made in 

AADL through the sub-clause call and is translated into 

direct calls from the thread start routine or from the 

routine respectively. 

The remote client-server call from a subprogram in 

a thread to another subprogram in another thread is 

made through the sub-clause call and the property 

Actual_Subprogram_Call. This remote call translates 

into a call from one routine to another. 

Subprogram parameters. A parameter represents 

call and return data values or references to data passed 

into and out of a subprogram, so it can be by value or 

by reference. In AADL the data values are in or out 

parameters and references are requires data access. 

Connections must be established between the ports of 

the thread (or the subprogram) and the ports of the 

subprogram. The data type of the AADL out parameter, 

if any, determines the data type of the routine; if there 

is no out parameter the type is void. Thus, the AADL 

parameters translate into parameters of the subprogram 

by value or reference. The translation permits data 

exchange among subprograms. 

AADL data are managed as follows: 

Data type. The AADL data abstraction represents 

static data and data types. Data component declarations 

are used to represent: application data types, the 

substructure of data types via data subcomponents 

within data implementation declarations and data 

instances. In general, a data type defines a set of values 

and the allowable operations on those values. Simple 

independent AADL data gives rise to a data type. 

These data types will be used later to define the type of 

a global variable, a message, etc. The name of the data 

type can be inferred from the name of the AADL data. 



This translation takes into account the property 

Source_Data_Size. In the case of data types, it 

specifies the maximum size required to hold a value of 

an instance of the data type. 

Simple Data. A simple AADL data subcomponent 

of a thread or a process gives rise to a simple global 

variable. The name and type can be inferred from the 

name and the AADL data type. 

Composite Data. AADL composite data is data that 

has one or more subprograms as features and/or one or 

more datum as subcomponents. This data generates a 

C++ class of data with its methods and/or member data. 

The name of the class can be inferred from the name of 

the AADL data. The names and types of the methods 

and members can be inferred from the AADL 

subprograms and data. The composite data 

subcomponents of a thread or a process give rise to a 

global variable whose type is that class. The name can 

be inferred from the name of the AADL data. 

The HW architecture is structured through the XML 

file generated by AADS. It is used as part of the 

configuration parameters of SCoPE and is divided into: 

HW_Platform, SW_Platform and Application. 

HW_Platform. Any AADL implementation of a 

processor, memory, bus or device must be specified 

with its category and name in the HW_Components 

subsection of HW_Platform. The AADL property 

Assign_Byte_Time is used to set the frequency 

parameter in the XML file. For memories we use the 

properties Read_Time and Write_Time. These 

properties have their values in time units (ns, ms and so 

on) and must be transformed into MHz. To know the 

mem_size of a memory, both Word_Count and 

Word_Size AADL properties are required. Finally the 

mem_type of a memory is derived from 

Memory_Protocol in the AADL model. If the 

component is a processor proc_type must be specified. 

The HW_Architecture and Computing_groups 

subsections of HW_Platform are the next of the XML 

file. To know the start_addr of a memory we take the 

AADL property Base_Address. The component and 

name are inferred from the AADL model. HW 

components are grouped by buses as they are 

connected to them in AADL through the connections 

bus access and the features requires bus access. 

SW_Platform. This section has two subsections: 

SW_Components and SW_Architecture. This section 

takes into account the buses that are defined to make 

the equivalent nodes. In this section the operating 

systems are specified. 

Application. This section has two subsections: 

Functionality and Allocation. Filling the Functionality 

section is straightforward from the AADL model using 

the property of a thread Activate_Entrypoint for the 

function and Source_Text for the file. The name is the 

same as the one of the thread. For the Allocation 

section we need to know the property of a thread 

Actual_Processor_Binding, and find out which bus the 

processor is bound to and then find out which node that 

bus corresponds to. The AADL name of the thread is 

used for the name and the component. 

 

5. Case study 
 

The proposed method implemented in AADS has 

been tested in a typical case study, the cruise control 

presented in Fig. 3, to assure the feasibility of the 

translation. Cruise control is a system that 

automatically controls the velocity of a motor vehicle. 

The driver sets a speed and the system will take over 

the throttle to maintain it. 

 
Fig. 3. Cruise control architecture. 

The figure shows an AADL model of a cruise 

control system, borrowed from the collection of AADL 

examples in the OSATE release, but modified to add 

some subcomponents. The system component contains 

two processors and two memories connected by a bus, 

and two SW subsystems. Each of the subsystems is 

bound to a separate processor and to a separate 

memory. Threads communicate via data ports, event 

ports and event data ports. Some data access 

connections can be seen too. There are some 

subprograms within threads and within data 

subcomponents and the call sequences (local and 

remote) between them are shown. The parameter 

connections between subprograms are shown too. One 

subsystem has two processes, one with four threads and 

the other with one. The other subsystem contains one 

process, with two threads. 

The files produced by AADS are compiled with 

SCoPE to simulate the model. The results obtained in 

the simulation are used to refine the model of the cruise 

control as needed. The value of the period of the 



threads has been refined to permit the correct 

interaction among threads. After trying different values 

of periods, 20 ms was found to be the best for all 

threads’ interaction. If one thread had a different period 

from the other, it had to wait for the first one to 

send/get data. 

The size of the message queues from the thread 

Refspd was refined from a prior value (10) to a value 

(200) that avoids missing messages in the reception. 

The other message queues did not need to be refined. 

Some SW subcomponents such as subprograms, 

composite data, etc. have been added to the AADL 

model to obtain the desired system performance. 

Properties have been defined and their values 

refined to achieve this purpose. Minimum and 

maximum times of some properties (e. g. 

Compute_Execution_Time) were adjusted depending 

on the results obtained. 

Connections among threads can be varied (and 

indeed they were varied) from the different types to 

achieve the desired interaction. 

The properties of the HW subcomponents were 

changed (e. g. as Assign_Byte_Time of the processors 

was increased the instructions executed, core and 

instruction energies decreased, see Fig. 4) to ascertain 

the different behaviors of the system. Thus, the most 

suitable HW subcomponent can be chosen for the 

system according to the initial constraints. 

 
Fig. 4. Design space exploration results. 

 

6. Conclusions 
 

This paper presents AADS, an AADL SystemC 

simulation tool. AADS supports the refinement of 

AADL models through performance analysis done with 

SCoPE, after translating those models. 

The generation of the SystemC model from the 

AADL specification is not straightforward. 

Nevertheless, the SystemC model generated by AADS 

is able to capture the fundamental dynamic properties 

of the initial system specification. In this way, AADS 

supports design space exploration by refinement of the 

AADL functionality and its implementation on an 

optimized platform. 

Future work includes incorporation of AADS 

features that appear in the behavior specification annex 

and in V2.0 of the AADL standard. 
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