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Abstract 
 

AADL has been proposed for designing and 

analyzing SW and HW architectures for real-time 

mission-critical embedded systems. However, it does 

not support the expression of the behavior of a system 

in detail, so a behavioral annex has been defined. 

In this paper we propose AADS+, an AADL 

simulation tool that supports the performance analysis 

of the AADL specification, enriched with behavior 

specifications, throughout the refinement process from 

the initial system architecture until the complete, 

detailed application and execution platform are 

developed. In this way, AADS+ enables the verification 

of the initial timing constraints during the complete 

design process. 

 

1. Introduction 
 

AADL [1-3] was developed as a standard of the 

SAE to enable the description of task and 

communication architectures of real-time, embedded, 

fault-tolerant, secure, safety-critical, SW-intensive 

systems. It is used to describe the software and 

hardware components of a system and the interfaces 

between them. However, AADL does not support the 

expression of behavior in detail. At most, it is possible 

to specify the non-deterministic behavior of a thread as 

a set of subprogram calls, and application behavior 

relies mainly on source code written in source 

languages. The behavioral annex [4] has introduced 

high-level composition concepts and a richer state 

representation than the standard AADL mode 

automata. The behavior is specified using extended 

automata that may trigger a transition by an event, a 

Boolean expression, etc. A transition may trigger one 

or more actions such as assignment of values to 

variables, sending data, events, etc. The annex mainly 

declares states and transitions with guards and an 

action part. Guards and actions can access ports and 

data subcomponents declared in the AADL component 

to which they are attached. 

There is a commonly recognized need for new 

development frameworks that enable designers to 

perform efficient exploration of design alternatives and 

analyze system properties throughout the design cycle. 

Some system properties can be obtained by static 

analysis. Many other properties can only be obtained 

through simulation. In any case, system simulation is 

necessary for performance analysis under real 

execution conditions. System simulation validates the 

correct dimensioning of the system, detection of locks, 

missed deadlines and other potential problems caused 

by the complex interaction among components that can 

be found in a real system. The earlier all those 

problems are detected, the less the associated cost of 

correcting them [5]. 

Evolutionary prototyping is becoming a well-

accepted development approach in Model-Driven 

Engineering (MDE) [6]. The design flow is based on a 

central model that is refined unless it is satisfactory. 

Programs can be generated from this model and 

constitute intermediate versions of the product. The last 

refined model corresponds to the final system. A 

prototyping-based design process is of interest to verify 

as early as possible, the impact of deployment 

decisions, or the use of a particular HW/SW 

component in the system. 

In this paper, a complete AADL simulation 

methodology including the behavioral annex is 

presented. This methodology has been implemented in 

the tool AADS [7]. AADS is a simulation framework 

that can support prototype-based design allowing the 

functional and non-functional (execution times, power 

consumption, etc.) verification of the system while it is 

being refined right through to the final implementation. 

AADS is based on SystemC that has become the 

standard language for modeling and simulation of 

HW/SW embedded systems [8]. The SystemC 

framework supports the seamless integration of any 

HW component and an easy optimization of the 

executive platform. 



The contents of the paper are as follows. The 

following section analyzes the state of the art. In 

Section 3, the previous work carried out with AADS is 

summarized.  Then, the SystemC model generation 

methodology from AADL behavioral annex is 

explained. Next, a case study is presented and finally 

conclusions are stated. 

 

2. State of the art 
 

Several authors have considered the behavioral 

annex in their research on AADL. Some of their papers 

were written in the initial stage of the behavioral annex 

so they were intended to evaluate, promote and 

disseminate it. P. Dissaux et al. [9] present a proposal 

for a behavioral annex to the AADL standard. They 

explain how to implement the behavioral annex with 

the Stood tool, a graphical AADL editor that can 

import and export AADL textual specifications. R. 

Bedin et al. [10] evaluate the behavioral annex through 

a flight software design in the ArchiDyn project. They 

require new synchronization primitives for AADL 

runtime and support using edition and analysis tools for 

the behavioral annex. J. P. Bodeveix et al. [11] propose 

an AADL behavioral annex and a technique to perform 

compositional real-time verification of AADL models 

through the use of a method which translates 

environmental constraints into behavior. 

Other papers, such as the latter one, include the 

behavioral annex in their verification process of AADL 

models. B. Berthomieu et al. describe in [12] a formal 

verification tool chain for AADL with its behavioral 

annex available in the Topcased environment. They 

translate the AADL model to Fiacre and verify the 

behavior with a Time Petri Net Analyzer (Tina). 

C. Ponsard et al. explore in [13] the interplay of 

requirements and architecture in a model-based 

perspective by defining a mapping and a constructive 

process taking into account specificities of embedded 

systems, especially the importance of non functional 

requirements. To generate the behavioral part of a 

system they first generate a finite state machine and 

then an AADL mode-transition. 

A way to tackle AADL and its behavioral annex is 

translation to another language. To allow simulation M. 

Yassin Chkouri et al. propose in [14] a translation from 

AADL models into BIP models. They take into account 

behavior specifications allowing state variables, 

initialization, states and transitions sections to be 

defined and translating them into BIP. DUALLY [15] 

is an automated framework that allows architectural 

language interoperability through automated model 

transformation techniques. I. Malavolta et al. analyze 

the feasibility of integrating AADL and OSATE in 

DUALLY. They map AADL behavioral annex sections 

of states, composite states and transitions. 

After analyzing the state of the art, a behavioral 

annex to the AADL standard appears to be necessary, 

which could be included in an AADL model in order to 

express the behavior of the components. 

However, no approach uses SystemC [16], which is 

the recognized standard for modeling HW/SW 

platforms, with its great potential for integration of 

processors, buses, memories and specific platform HW. 

Our solution makes HW/SW co-design easier because 

of the use of SystemC. 

SCoPE [17-18] is a C++ library that extends the 

standard language SystemC without modifying it. It 

simulates C/C++ SW code based on two different 

operating system interfaces (POSIX [19-20] and 

MicroC/OS). Moreover, it co-simulates these pieces of 

code with HW described in SystemC. 

In a previous work [21], a preliminary version of 

AADS supporting a part of the AADL standard was 

developed. Now we have improved AADS to take into 

account the most important issues of the AADL 

behavioral annex (states, transitions, sending and 

receiving messages, etc.). AADS+ supports AADL 

behavioral annex simulation in SystemC, thus enabling 

the HW platform to be modeled and permitting 

HW/SW codesign. The AADL model is based on 

POSIX, so it supports many different RTOSs. 

 

3. Previous work 
 

AADS is written in Java and was developed as a 

plug-in [22] of Eclipse [23]. AADS enables the 

modeling of a subset of AADL for purposes of 

implementation and simulation. The starting point of 

the simulator is a functional AADL specification 

without detailed code. For each component, the 

corresponding timing constraints are defined. This 

initial AADL specification supports the verification of 

the global performance constraints of the system based 

on the specific timing constraints of the different 

components. The AADL model is parsed using AADS 

and a model suitable for simulation with SCoPE is 

produced, in order to check whether the AADL 

constraints are fulfilled. As the design process 

advances and, on the one hand, the actual functionality 

is attached to the SW components using the 

corresponding source code and, on the other, the 

functionality is mapped onto specific platform 

resources, a more accurate performance estimation is 

performed. These refined properties can be added to 

the AADL model and a new model can be generated by 



AADS. By comparing the initial timing constraints with 

these refined, timing estimations, it is possible to verify 

the non functional correctness of the design process at 

any refinement step. 

AADL enables the specification of both the 

architecture and functionality of an embedded real-time 

system. AADS translates both to SystemC (see Figure 

1). It parses the AADL model so the functionality is 

translated to an equivalent POSIX model and the 

architecture is represented in XML [24]. 

 

 
Figure 1: Translation process. 

 

4. Translation of the behavioral annex 
 

The AADL behavioral annex improves the 

specification of a component’s behavior. AADS+ 

parses the AADL model so the annex 

behavior_specification sections are translated to an 

equivalent POSIX model. 

The behavioral annex describes a transition system 

(an extended automaton) using optional sections: 

State variables. The state variables section declares 

typed identifiers. Types are data classifiers of the 

AADL model. AADS+ translates these state variables 

declaring variables with their corresponding type in the 

C++ source code of the thread or subprogram itself. 

Initialization. The state variables must be 

initialized in the initialization section using a sequence 

of assignments. AADS+ translates this initialization 

initializing the variables with their corresponding value 

where they were declared. 

States. The states section declares automaton states 

which can be qualified as initial, complete, return, 

urgent or composite. AADS+ uses this section to know 

which states have been defined. 

Transitions. The transitions section defines system 

transitions from a source state to a destination state. 

The transition can be guarded with events or Boolean 

conditions. An action part can be attached to the 

transition. It can perform subprogram calls, message 

sending or assignments. AADS+ translates the 

transitions section into switch and case statements to 

transit from one state to another. It starts in the initial 

state and moves to the next state when the guard of the 

transition is true. So the guard of the transition 

translated by AADS+ acts as a condition to execute the 

sentence/s of the state and to change the state. This 

sentence/s is the action of the transition translated by 

AADS+. If there is no guard there is no condition to 

check. The guard can be an expression as simple as on 

i < 5, so AADS+ will translate it directly. 

Depending on the content of the guard and the 

action of the transition, AADS+ translates them into 

the corresponding sentences of source code: 

Sending / receiving messages. Messages are sent / 

received through event or event data ports. If p is an 

input port: p? de-queues an event port variable, p?x de-

queues a datum on an event data port in the variable x. 

If p is an output port: p! calls Raise_Event on an event 

port, p!d writes data d in the event data port and calls 

Raise_Event. 

In the first case the guard of a transition is p1?x 

(where p1 is an in event data port) and the action of 

that transition is p2!(x+1) (where p2 is an out event 

data port). AADS+ translates this case, checking 

whether a variable arrives at the POSIX message queue 

associated with the port p1. Then the variable is sent 

through the POSIX message queue associated with the 

port p2, in this case after adding 1 to it. 

In the second case the guard of a transition is p1? 

(p1 is an in event port) and the action of that transition 

is p2! (p2 is an out event port). AADS+ translates this 

case, checking whether the corresponding POSIX 

signal associated with the port p1 has been received. 

Then the corresponding POSIX signal associated with 

the port p2 is sent. 

Subprograms. A behavior expressed by the annex 

can be attached to a subprogram implementation. The 

behavior can refer to the subprogram parameters and to 

variables. The automaton specifying the subprogram 

implementation has one or more return states indicating 

the return to the caller. While the AADL control flows 

define the call sequences produced by a subprogram, 

the annex enables the expression of dependencies 

between the control flows and state variables or 

parameters. A subprogram specification can express 

other calls or notification of events. 

In the first case the guard of a transition is p1? (p1 

is an in event port) and the action of that transition is 

subp! (subp is a subprogram). AADS+ translates this 

case checking whether the corresponding POSIX signal 

associated with the port p1 has been received. If the 

signal has been received then the corresponding 

previously defined subprogram is called. 

Parameters can be passed to called subprograms. 

The action of that transition could be subp!(5->x,2->y) 

where x and y are two in parameters of the subprogram 



subp. Then AADS+ translates it into a call to the 

subprogram with those two parameters as subp(5,2). 

Using the AADL behavioral annex, it is possible to 

indicate in the action of a transition that the out 

parameter of a subprogram is the in parameter modified 

in some way. It could be po!(pi+1), where po is the out 

parameter and pi the in parameter. AADS+ translates 

this case, creating the source code in the subprogram 

that sums one to the in parameter and assigns the result 

to the out parameter. 

In the last case the guard of a transition is on pi (pi 

is an in parameter of a subprogram) and the action of 

that transition is a call to a standard function like 

std::cout!. To translate this transition AADS+ 

generates the C++ source code that checks whether the 

in parameter is true and, if it is, calls the standard 

function cout. 

Control structures. Control structures support 

conditional execution of alternative actions (if, else, 

end if), conditional repetition of actions (while), and 

application of actions over all elements of a data 

component array, port queue content, or integer range 

(for). The For structure represents an ordered iteration 

over all elements. Within the for structure the element 

can be referenced by element_variable_identifier, 

which acts as a local variable with the name scope of 

for structure. 

 

In the case that the action of a transition contains a 

conditional structure of the type: if (logical value 

expression) behavior_actions [else behavior_actions] 

end if, AADS+ translates it producing the source code 

with the analogous if else structure in C++, adapting 

the differences between them. 

The same can be said about for and while structures 

of the type: for (element variable identifier in values) 

{behavior_actions} and while (logical value 

expression) {behavior_actions}. AADS+ translates 

them producing the source code with the analogous for 

and while structure in C++, adapting the differences 

between them. 

Arrays. To declare collections of data which are 

considered to be ordered the notion of multiplicity is 

used. AADS+ translates multiplicity into a C++ array 

of data. The type of the array is the same in both 

AADL and C++. 

 

5. Case study 
 

The proposed method implemented in AADS+ has 

been tested in a typical case study, the cruise control 

presented in Figure 2, to assure the feasibility of the 

translation. Cruise control is a system that 

automatically controls the velocity of a motor vehicle. 

The driver sets a speed and the system will take over 

the throttle to maintain it. 

 

 
Figure 2. Refined cruise control architecture.

The use of the AADL behavioral annex with 

AADS+ has been validated through the refinement of 

the original cruise control design. As the original 

model was developed without using the behavioral 



annex, the model lacked relevant behavioral 

information. The annex overcomes these problems and 

enables the development of a more detailed 

architecture. 

The figure shows an AADL model with its 

behavioral annex of a cruise control system, taken from 

the collection of AADL examples in the OSATE 

release, but modified to add some subcomponents. The 

system component contains two processors, two 

memories and two devices connected by a bus, and two 

SW subsystems. Each of the subsystems is bound to a 

separate processor and to a separate memory. Threads 

communicate via data ports, event ports and event data 

ports. Some data access connections can be seen too. 

There are some subprograms within threads and within 

data subcomponents and the call sequences (local and 

remote) between them are shown. The parameter 

connections between subprograms are shown too. One 

subsystem has two processes, one with four threads and 

the other with one. The other subsystem contains one 

process, with two threads. 

The files produced by AADS+ are compiled with 

SCoPE to simulate the model. The results obtained in 

the simulation are used to refine the model of the cruise 

control as needed. 

Figures 3 and 4 are an example of the translation 

performed by AADS+ of the behavior specification of 

a thread. Messages are sent and received through event 

data ports. In this case the guard of a transition is 

Refspd_Mph?x and the action of that transition is 

Filrefspd_Mph!(x+1) (Refspd_Mph / Filrefspd_Mph 

are in / out event data ports). AADS+ translates it 

checking whether a variable arrives at the POSIX 

message queue associated with the port Refspd_Mph. 

Then the variable is sent through the POSIX message 

queue associated with the port Filrefspd_Mph, after 

adding 1 to it. 

Subprograms with their behavior specifications 

have been added to the AADL model of the cruise 

control to obtain the desired system performance. For 

example, to detect if a button has been pushed by the 

driver the corresponding behavior was added to a 

subprogram in Button_panel thread and refined 

through simulation. 

When the driver activates the cruise control, an 

event is sent to the Refspd thread that sends another 

event to the Instrumentpanel thread to show the 

activation; this behavior has been implemented in the 

thread Refspd. 

 
Figure 3. A behavior specification of a thread. 

 

 
Figure 4. C++ code translated by AADS+. 

 

The correct operation of the behavior specification 

created to know whether the Drivermodelogic is 

activated or disactivated was refined by simulating the 

model. 

Another example of behavior specification is in the 

thread Instrumentpanel, which provides information 



about the actuation zone depending on the  

speed of the vehicle (see Figure 5). All these examples 

were translated by AADS+ in an analogous way as can 

be seen in the previous figures. 

 

 
Figure 5. State diagram of one Instrumentpanel’s behavior. 

 

Refinement of the original cruise control model with 

behavior specifications does not require a large number 

of AADL code lines, AADS+ does not produce so 

many C++ code lines as one might fear (see Figure 6) 

and the gain in expressiveness of the model’s behavior 

is great. Furthermore, the cost in terms of use of CPU, 

core energy/power, bus access time, etc is slight. 

 

 
Figure 6. Comparison between the two models' metrics. 

 

6. Conclusions and further work 
 

This paper presents the simulation of the AADL 

behavioral annex using the AADS+ simulation tool. 

AADS+ supports the refinement of AADL models, 

including the behavioral annex, through performance 

analysis done with SCoPE, after translating those 

models. 

The generation of the SystemC model from the 

AADL specification and its behavioral annex is not 

straightforward. Nevertheless, the SystemC model 

generated by AADS+ is able to capture the 

fundamental dynamic properties of the initial system 

specification. In this way, AADS+ supports design 

space exploration by refinement of the AADL 

functionality and its implementation on an optimized 

platform. 

Future work includes incorporation of AADS+ 

features that appear in V2.0 of the AADL standard. 

Furthermore, the source code produced by AADS+ for 

the software components will be made compatible with 

the ASSERT Ravenscar Computational Model (RCM). 
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