
Copyright © 2010 IEEE.

This material is posted here with permission of the IEEE. Such permission

of the IEEE does not in any way imply IEEE endorsement of any of Grupo de

Ingeniería Microelectrónica Universidad de Cantabria's products or

services. Internal or personal use of this material is permitted.

However, permission to reprint/republish this material for advertising or

promotional purposes or for creating new collective works for resale or

redistribution must be obtained from the IEEE by writing to

pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

AADS+: AADL Simulation including the Behavioral Annex
1

Roberto Varona-Gómez, Eugenio Villar

University of Cantabria, Av. Los Castros s/n, 39005 Santander, Spain

{roberto, villar}@teisa.unican.es

1
 This work has been partially supported by the Spanish MICyT through the ITEA 05015 SPICES Project and the TEC2008-04107 project.

Abstract

AADL has been proposed for designing and

analyzing SW and HW architectures for real-time

mission-critical embedded systems. However, it does

not support the expression of the behavior of a system

in detail, so a behavioral annex has been defined.

In this paper we propose AADS+, an AADL

simulation tool that supports the performance analysis

of the AADL specification, enriched with behavior

specifications, throughout the refinement process from

the initial system architecture until the complete,

detailed application and execution platform are

developed. In this way, AADS+ enables the verification

of the initial timing constraints during the complete

design process.

1. Introduction

AADL [1-3] was developed as a standard of the

SAE to enable the description of task and

communication architectures of real-time, embedded,

fault-tolerant, secure, safety-critical, SW-intensive

systems. It is used to describe the software and

hardware components of a system and the interfaces

between them. However, AADL does not support the

expression of behavior in detail. At most, it is possible

to specify the non-deterministic behavior of a thread as

a set of subprogram calls, and application behavior

relies mainly on source code written in source

languages. The behavioral annex [4] has introduced

high-level composition concepts and a richer state

representation than the standard AADL mode

automata. The behavior is specified using extended

automata that may trigger a transition by an event, a

Boolean expression, etc. A transition may trigger one

or more actions such as assignment of values to

variables, sending data, events, etc. The annex mainly

declares states and transitions with guards and an

action part. Guards and actions can access ports and

data subcomponents declared in the AADL component

to which they are attached.

There is a commonly recognized need for new

development frameworks that enable designers to

perform efficient exploration of design alternatives and

analyze system properties throughout the design cycle.

Some system properties can be obtained by static

analysis. Many other properties can only be obtained

through simulation. In any case, system simulation is

necessary for performance analysis under real

execution conditions. System simulation validates the

correct dimensioning of the system, detection of locks,

missed deadlines and other potential problems caused

by the complex interaction among components that can

be found in a real system. The earlier all those

problems are detected, the less the associated cost of

correcting them [5].

Evolutionary prototyping is becoming a well-

accepted development approach in Model-Driven

Engineering (MDE) [6]. The design flow is based on a

central model that is refined unless it is satisfactory.

Programs can be generated from this model and

constitute intermediate versions of the product. The last

refined model corresponds to the final system. A

prototyping-based design process is of interest to verify

as early as possible, the impact of deployment

decisions, or the use of a particular HW/SW

component in the system.

In this paper, a complete AADL simulation

methodology including the behavioral annex is

presented. This methodology has been implemented in

the tool AADS [7]. AADS is a simulation framework

that can support prototype-based design allowing the

functional and non-functional (execution times, power

consumption, etc.) verification of the system while it is

being refined right through to the final implementation.

AADS is based on SystemC that has become the

standard language for modeling and simulation of

HW/SW embedded systems [8]. The SystemC

framework supports the seamless integration of any

HW component and an easy optimization of the

executive platform.

The contents of the paper are as follows. The

following section analyzes the state of the art. In

Section 3, the previous work carried out with AADS is

summarized. Then, the SystemC model generation

methodology from AADL behavioral annex is

explained. Next, a case study is presented and finally

conclusions are stated.

2. State of the art

Several authors have considered the behavioral

annex in their research on AADL. Some of their papers

were written in the initial stage of the behavioral annex

so they were intended to evaluate, promote and

disseminate it. P. Dissaux et al. [9] present a proposal

for a behavioral annex to the AADL standard. They

explain how to implement the behavioral annex with

the Stood tool, a graphical AADL editor that can

import and export AADL textual specifications. R.

Bedin et al. [10] evaluate the behavioral annex through

a flight software design in the ArchiDyn project. They

require new synchronization primitives for AADL

runtime and support using edition and analysis tools for

the behavioral annex. J. P. Bodeveix et al. [11] propose

an AADL behavioral annex and a technique to perform

compositional real-time verification of AADL models

through the use of a method which translates

environmental constraints into behavior.

Other papers, such as the latter one, include the

behavioral annex in their verification process of AADL

models. B. Berthomieu et al. describe in [12] a formal

verification tool chain for AADL with its behavioral

annex available in the Topcased environment. They

translate the AADL model to Fiacre and verify the

behavior with a Time Petri Net Analyzer (Tina).

C. Ponsard et al. explore in [13] the interplay of

requirements and architecture in a model-based

perspective by defining a mapping and a constructive

process taking into account specificities of embedded

systems, especially the importance of non functional

requirements. To generate the behavioral part of a

system they first generate a finite state machine and

then an AADL mode-transition.

A way to tackle AADL and its behavioral annex is

translation to another language. To allow simulation M.

Yassin Chkouri et al. propose in [14] a translation from

AADL models into BIP models. They take into account

behavior specifications allowing state variables,

initialization, states and transitions sections to be

defined and translating them into BIP. DUALLY [15]

is an automated framework that allows architectural

language interoperability through automated model

transformation techniques. I. Malavolta et al. analyze

the feasibility of integrating AADL and OSATE in

DUALLY. They map AADL behavioral annex sections

of states, composite states and transitions.

After analyzing the state of the art, a behavioral

annex to the AADL standard appears to be necessary,

which could be included in an AADL model in order to

express the behavior of the components.

However, no approach uses SystemC [16], which is

the recognized standard for modeling HW/SW

platforms, with its great potential for integration of

processors, buses, memories and specific platform HW.

Our solution makes HW/SW co-design easier because

of the use of SystemC.

SCoPE [17-18] is a C++ library that extends the

standard language SystemC without modifying it. It

simulates C/C++ SW code based on two different

operating system interfaces (POSIX [19-20] and

MicroC/OS). Moreover, it co-simulates these pieces of

code with HW described in SystemC.

In a previous work [21], a preliminary version of

AADS supporting a part of the AADL standard was

developed. Now we have improved AADS to take into

account the most important issues of the AADL

behavioral annex (states, transitions, sending and

receiving messages, etc.). AADS+ supports AADL

behavioral annex simulation in SystemC, thus enabling

the HW platform to be modeled and permitting

HW/SW codesign. The AADL model is based on

POSIX, so it supports many different RTOSs.

3. Previous work

AADS is written in Java and was developed as a

plug-in [22] of Eclipse [23]. AADS enables the

modeling of a subset of AADL for purposes of

implementation and simulation. The starting point of

the simulator is a functional AADL specification

without detailed code. For each component, the

corresponding timing constraints are defined. This

initial AADL specification supports the verification of

the global performance constraints of the system based

on the specific timing constraints of the different

components. The AADL model is parsed using AADS

and a model suitable for simulation with SCoPE is

produced, in order to check whether the AADL

constraints are fulfilled. As the design process

advances and, on the one hand, the actual functionality

is attached to the SW components using the

corresponding source code and, on the other, the

functionality is mapped onto specific platform

resources, a more accurate performance estimation is

performed. These refined properties can be added to

the AADL model and a new model can be generated by

AADS. By comparing the initial timing constraints with

these refined, timing estimations, it is possible to verify

the non functional correctness of the design process at

any refinement step.

AADL enables the specification of both the

architecture and functionality of an embedded real-time

system. AADS translates both to SystemC (see Figure

1). It parses the AADL model so the functionality is

translated to an equivalent POSIX model and the

architecture is represented in XML [24].

Figure 1: Translation process.

4. Translation of the behavioral annex

The AADL behavioral annex improves the

specification of a component’s behavior. AADS+

parses the AADL model so the annex

behavior_specification sections are translated to an

equivalent POSIX model.

The behavioral annex describes a transition system

(an extended automaton) using optional sections:

State variables. The state variables section declares

typed identifiers. Types are data classifiers of the

AADL model. AADS+ translates these state variables

declaring variables with their corresponding type in the

C++ source code of the thread or subprogram itself.

Initialization. The state variables must be

initialized in the initialization section using a sequence

of assignments. AADS+ translates this initialization

initializing the variables with their corresponding value

where they were declared.

States. The states section declares automaton states

which can be qualified as initial, complete, return,

urgent or composite. AADS+ uses this section to know

which states have been defined.

Transitions. The transitions section defines system

transitions from a source state to a destination state.

The transition can be guarded with events or Boolean

conditions. An action part can be attached to the

transition. It can perform subprogram calls, message

sending or assignments. AADS+ translates the

transitions section into switch and case statements to

transit from one state to another. It starts in the initial

state and moves to the next state when the guard of the

transition is true. So the guard of the transition

translated by AADS+ acts as a condition to execute the

sentence/s of the state and to change the state. This

sentence/s is the action of the transition translated by

AADS+. If there is no guard there is no condition to

check. The guard can be an expression as simple as on

i < 5, so AADS+ will translate it directly.

Depending on the content of the guard and the

action of the transition, AADS+ translates them into

the corresponding sentences of source code:

Sending / receiving messages. Messages are sent /

received through event or event data ports. If p is an

input port: p? de-queues an event port variable, p?x de-

queues a datum on an event data port in the variable x.

If p is an output port: p! calls Raise_Event on an event

port, p!d writes data d in the event data port and calls

Raise_Event.

In the first case the guard of a transition is p1?x

(where p1 is an in event data port) and the action of

that transition is p2!(x+1) (where p2 is an out event

data port). AADS+ translates this case, checking

whether a variable arrives at the POSIX message queue

associated with the port p1. Then the variable is sent

through the POSIX message queue associated with the

port p2, in this case after adding 1 to it.

In the second case the guard of a transition is p1?

(p1 is an in event port) and the action of that transition

is p2! (p2 is an out event port). AADS+ translates this

case, checking whether the corresponding POSIX

signal associated with the port p1 has been received.

Then the corresponding POSIX signal associated with

the port p2 is sent.

Subprograms. A behavior expressed by the annex

can be attached to a subprogram implementation. The

behavior can refer to the subprogram parameters and to

variables. The automaton specifying the subprogram

implementation has one or more return states indicating

the return to the caller. While the AADL control flows

define the call sequences produced by a subprogram,

the annex enables the expression of dependencies

between the control flows and state variables or

parameters. A subprogram specification can express

other calls or notification of events.

In the first case the guard of a transition is p1? (p1

is an in event port) and the action of that transition is

subp! (subp is a subprogram). AADS+ translates this

case checking whether the corresponding POSIX signal

associated with the port p1 has been received. If the

signal has been received then the corresponding

previously defined subprogram is called.

Parameters can be passed to called subprograms.

The action of that transition could be subp!(5->x,2->y)

where x and y are two in parameters of the subprogram

subp. Then AADS+ translates it into a call to the

subprogram with those two parameters as subp(5,2).

Using the AADL behavioral annex, it is possible to

indicate in the action of a transition that the out

parameter of a subprogram is the in parameter modified

in some way. It could be po!(pi+1), where po is the out

parameter and pi the in parameter. AADS+ translates

this case, creating the source code in the subprogram

that sums one to the in parameter and assigns the result

to the out parameter.

In the last case the guard of a transition is on pi (pi

is an in parameter of a subprogram) and the action of

that transition is a call to a standard function like

std::cout!. To translate this transition AADS+

generates the C++ source code that checks whether the

in parameter is true and, if it is, calls the standard

function cout.

Control structures. Control structures support

conditional execution of alternative actions (if, else,

end if), conditional repetition of actions (while), and

application of actions over all elements of a data

component array, port queue content, or integer range

(for). The For structure represents an ordered iteration

over all elements. Within the for structure the element

can be referenced by element_variable_identifier,

which acts as a local variable with the name scope of

for structure.

In the case that the action of a transition contains a

conditional structure of the type: if (logical value

expression) behavior_actions [else behavior_actions]

end if, AADS+ translates it producing the source code

with the analogous if else structure in C++, adapting

the differences between them.

The same can be said about for and while structures

of the type: for (element variable identifier in values)

{behavior_actions} and while (logical value

expression) {behavior_actions}. AADS+ translates

them producing the source code with the analogous for

and while structure in C++, adapting the differences

between them.

Arrays. To declare collections of data which are

considered to be ordered the notion of multiplicity is

used. AADS+ translates multiplicity into a C++ array

of data. The type of the array is the same in both

AADL and C++.

5. Case study

The proposed method implemented in AADS+ has

been tested in a typical case study, the cruise control

presented in Figure 2, to assure the feasibility of the

translation. Cruise control is a system that

automatically controls the velocity of a motor vehicle.

The driver sets a speed and the system will take over

the throttle to maintain it.

Figure 2. Refined cruise control architecture.

The use of the AADL behavioral annex with

AADS+ has been validated through the refinement of

the original cruise control design. As the original

model was developed without using the behavioral

annex, the model lacked relevant behavioral

information. The annex overcomes these problems and

enables the development of a more detailed

architecture.

The figure shows an AADL model with its

behavioral annex of a cruise control system, taken from

the collection of AADL examples in the OSATE

release, but modified to add some subcomponents. The

system component contains two processors, two

memories and two devices connected by a bus, and two

SW subsystems. Each of the subsystems is bound to a

separate processor and to a separate memory. Threads

communicate via data ports, event ports and event data

ports. Some data access connections can be seen too.

There are some subprograms within threads and within

data subcomponents and the call sequences (local and

remote) between them are shown. The parameter

connections between subprograms are shown too. One

subsystem has two processes, one with four threads and

the other with one. The other subsystem contains one

process, with two threads.

The files produced by AADS+ are compiled with

SCoPE to simulate the model. The results obtained in

the simulation are used to refine the model of the cruise

control as needed.

Figures 3 and 4 are an example of the translation

performed by AADS+ of the behavior specification of

a thread. Messages are sent and received through event

data ports. In this case the guard of a transition is

Refspd_Mph?x and the action of that transition is

Filrefspd_Mph!(x+1) (Refspd_Mph / Filrefspd_Mph

are in / out event data ports). AADS+ translates it

checking whether a variable arrives at the POSIX

message queue associated with the port Refspd_Mph.

Then the variable is sent through the POSIX message

queue associated with the port Filrefspd_Mph, after

adding 1 to it.

Subprograms with their behavior specifications

have been added to the AADL model of the cruise

control to obtain the desired system performance. For

example, to detect if a button has been pushed by the

driver the corresponding behavior was added to a

subprogram in Button_panel thread and refined

through simulation.

When the driver activates the cruise control, an

event is sent to the Refspd thread that sends another

event to the Instrumentpanel thread to show the

activation; this behavior has been implemented in the

thread Refspd.

Figure 3. A behavior specification of a thread.

Figure 4. C++ code translated by AADS+.

The correct operation of the behavior specification

created to know whether the Drivermodelogic is

activated or disactivated was refined by simulating the

model.

Another example of behavior specification is in the

thread Instrumentpanel, which provides information

about the actuation zone depending on the

speed of the vehicle (see Figure 5). All these examples

were translated by AADS+ in an analogous way as can

be seen in the previous figures.

Figure 5. State diagram of one Instrumentpanel’s behavior.

Refinement of the original cruise control model with

behavior specifications does not require a large number

of AADL code lines, AADS+ does not produce so

many C++ code lines as one might fear (see Figure 6)

and the gain in expressiveness of the model’s behavior

is great. Furthermore, the cost in terms of use of CPU,

core energy/power, bus access time, etc is slight.

Figure 6. Comparison between the two models' metrics.

6. Conclusions and further work

This paper presents the simulation of the AADL

behavioral annex using the AADS+ simulation tool.

AADS+ supports the refinement of AADL models,

including the behavioral annex, through performance

analysis done with SCoPE, after translating those

models.

The generation of the SystemC model from the

AADL specification and its behavioral annex is not

straightforward. Nevertheless, the SystemC model

generated by AADS+ is able to capture the

fundamental dynamic properties of the initial system

specification. In this way, AADS+ supports design

space exploration by refinement of the AADL

functionality and its implementation on an optimized

platform.

Future work includes incorporation of AADS+

features that appear in V2.0 of the AADL standard.

Furthermore, the source code produced by AADS+ for

the software components will be made compatible with

the ASSERT Ravenscar Computational Model (RCM).

7. References

[1] SAE: AADL. June 2006, document AS5506/1.

www.sae.org/technical/standards/AS5506/1.

[2] P. H. Feiler, D. P. Gluch, J. J. Hudak: The AADL: An

Introduction. CMU. Pittsburgh. (2006).

[3] P. H. Feiler, J. J. Hudak: Developing AADL Models for

Control Systems: Practitioner’s Guide. CMU. 2006.

[4] SAE. Annex Behavior V1.6 AS5506, 2007.
[5] A.D. Pimentel et al.: “A systematic approach to exploring

embedded system architectures at multiple abstraction levels”,

IEEE Transactions on Computers, 2006.

[6] J. Hugues, B. Zalila, L. Pautet, F. Kordon: From the

prototype to the final embedded system using the Ocarina

AADL tool suite. ACM TECS, 2008. NY, USA.

[7] AADS V2.0 UC 2009. www.teisa.unican.es/AADS

[8] H. Posadas et al.: RTOS modeling in SystemC for real-
time embedded SW simulation: A POSIX model. Design

Automation for Embedded Systems. Springer. 2005.

[9] P. Dissaux, J. P. Bodeveix, M. Filali, P. Gaufillet, F.

Vernadat: AADL behavioral annex. DASIA 2006. Berlin.

[10] R. Bedin, J. P. Bodeveix, M. Filali, J. F. Rolland, D.

Chemouil, D. Thomas: The AADL behavior annex –

experiments and roadmap. ICECCS 2007. New Zealand.

[11] J. P. Bodeveix, M. Filali, M. Rached, D. Chemouil, P.

Gaufillet: Experimenting an AADL behavioral annex and a

verification method. DASIA 2006. Berlin, Germany.

[12] B. Berthomieu, J. P. Bodeveix, C. Chaudet, S. Dal Zilio,

M. Filali, F. Vernadat: Formal Verification of AADL

Specifications in the Topcased Environment. Ada-Europe

2009. Brest, France.

[13] C. Ponsard, M. Delehaye: Towards a model-driven

approach for mapping requirements on AADL architectures.

ICECCS 2009. Potsdam, Germany.

[14] M. Yassin Chkouri, A. Robert, M. Bozga, J. Sifakis:

Translating AADL into BIP – Application of Real-time

Systems. ACESMB 2008. Toulouse, France.

[15] I. Malavolta, H. Muccini, P. Pelliccione: Integrating

AADL within a multi-domain modelling framework.

ICECCS 2009. Potsdam, Germany.

[16] David C. Black, Jack Donovan: SystemC: From the

ground up. Kluwer Academic Publishers. Boston (2004).

[17] SCoPE V1.1.0 UC 2009. www.teisa.unican.es/scope

[18] H. Posadas et al.: SystemC Platform Modeling for

Behavioral Simulation and Performance Estimation of

Embedded Systems. 2009. IGI Global. 978-1-60566750-8

[19] M. González: POSIX tiempo real. UC, Santander 2004.

[20] The Open Group: The Single UNIX Specification, V. 2,

1997. www.opengroup.org/onlinepubs/007908799.

[21] R. Varona Gómez, E. Villar: AADL Simulation and

Performance Analysis in SystemC. ICECCS 2009. Germany.

[22] P. H. Feiler, A. Greenhouse: OSATE Plug-in

Development Guide. CMU. Pittsburgh. (2006).

[23] The Eclipse Foundation 2009. www.eclipse.org

[24] W3C: Extensible Markup Language (XML) W3C

Recommendation (2006). www.w3.org/TR/REC-xml/

