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Abstract – Interval arithmetic was original developed 

to estimate rounding errors on floating-point 
computations but  it is used in a wide variety of 
applications from constraint solvers and global 
optimizers to power and timing analysis of software 
processes. The objective of interval analysis is to 
determine the output ranges (or interval) of a 
computation set. The main problem of classical interval 
analysis is the overestimation of the output ranges and 
its dependency on the coding of the system behavior. In 
this paper, a modified interval analysis method is 
presented. The method reduces the interval 
overestimation and it is independent of the coding. This 
modified interval analysis is the kernel of a new 
verification technique that enables the verification of 
functional properties in system level descriptions and 
obtains functional test vectors. 
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I. INTRODUCTION 
As system complexity grows, designers describe it 

at higher abstraction levels and spend more effort on 
verification. In order to confront this growing 
complexity, it is essential to define verification 
methodologies that allow the validation of the design 
during the specification step, at system level. 
Simulation is the most widely used verification 
technique, but even if coverage metrics are used, it 
has several problems (test bench definition, 
completeness, etc). Another possibility is to use 
formal verification techniques. Some of these are 
based on transforming the system description into a 
functionally canonical form, such as BDDs, and 
deriving the solution from this structure. Other 
verification techniques test the satisfiability of 
properties (e.g. SAT-based verification [2, 3, 7]) or 
combine both approaches. However, these previously 
commented approaches generally suffer from 
exponential worst-case complexity, because they use 
Boolean representations of the system that increase 
the number of signals and operators during the 
verification processes. 

This paper proposes a different type of solution that 
takes advantage of the structure of system-level 
description. At this level, the system is described with 
a set of statements that operate with integer or real 
data. Common arithmetic, relational and control 
statement are used.  

The main objective of the proposed technique is to 
find an input range that verifies a set at properties 
and/or constraints. In order to do so, interval 
arithmetic is used [4]. Although this technique has 
been used previously in verification (e.g. timing and 
power analysis in software [6]), it has important 

drawbacks: overestimation of the output range and 
expression dependency. For example, if the behavior 
of the ‘y’ output is represented by the equation   
‘y=x2-x’ and the ‘x’ input is defined in the range       
[-2,3], it is possible to derive that the output ‘y’ will 
be defined in the range [-9,11] using interval 
arithmetic [4]. However, if the output is defined by 
the equivalent equation ‘y=x(x-1)’, the derived range 
will be [-9,6]. Both approaches are overestimations of 
the correct range, [-1/4,6].  

In this paper, a modified interval analysis, which is 
independent of the expression and has low 
overestimation, is presented. This technique is used to 
determine the input space values that verify certain 
properties. These input values can be used as test 
benches and/or counter-examples. 

 
II. MODIFIED INTERVAL ANALYSIS 

In our approach, we assume that the system is 
described at system level as a set of statements that 
operate with integer or real data. The addition, 
subtraction and multiplication operators are supported 
as well as ‘if’ control statements. Loop statements and 
other operators (Boolean operations, division, etc) are 
not currently supported. 

At system level, the functionality can be 
represented for polynomial functions. Let P(x1, x2, ..., 
xN) be the polynomial that describes the behavior of a 
system ‘S’ with a input space of N inputs (xI1 < x1 < 
xS1, xI2 < x2 < xS2, …, xIN < xN < xSN ≡ XI<X<XS). The 
inputs are positive. With negative inputs, a 
displacement is proposed. In order to obtain a 
maximum and minimum bound of this polynomial, it 
is split in two polynomials: the increasing (P+(X)) and 
the decreasing (P–(X)) polynomials. The increasing 
polynomial is composed of positive monomials (terms 
of the polynomial) and the decreasing polynomial by 
negative monomials. P+(X) and P–(X) can be non-
linear functions, so they are bounded by two linear 
functions (hyperplanes): upper (PA(X)) and lower 
(PB(X)) bound hyperplanes. The addition of the 
bounds of the monotonous polynomials provides a 
hyperplanes that limit the polynomial P(X). From 
these hyperplanes are obtained the range of values of 
the P(X) in the input space. 

 
III. SYSTEM-LEVEL VERIFICATION BASED ON 

INTERVALS 
Let ‘S’ be the system to verify. The objective is to verify 

that certain properties are true or false in an input value 
space (i.e. there is no overflow in operations, a special 
control path is executed, an assertion is asserted, etc). 



The system description includes control and data 
statements as well as input assertions. The data statements 
affect interval values and the control statements and 
assertions are constraints that reduce the input value space. 
The current version of the algorithm only considers 
conditional control statements. In order to evaluate a 
property, all the conditional statements of the path 
between the inputs and the property have to be considered. 
These conditions (or requirements) are transformed into 
expressions of the form P(X) > 0, thus if the conditional 
expression takes a value greater than 0 the requirement 
will be satisfied. For example, the statement  “if (x + y < 
50) then” is transformed into  “if (50 - x - y  > 0) then” and 
the input values ‘x = 10’, ‘y = 20’ satisfy the requirement 
but the input values ‘x = 30’ and ‘y = 25’ do not.  

Modified interval analysis is used to approach these 
constraints. Thus, the output range sign will determine the 
constraint satisfaction. The possible situations are: the 
maximum value of the approximated requirement is less 
than ‘0’ on case (a). This means that there is no input that 
satisfies the requirement, therefore, the input value space 
will not be considered during the rest of the analysis. Case 
(c) occurs when the minimum value of the requirement 
approximation is greater than ‘0’. This means that all the 
inputs satisfy the requirement, thus this requirement is 
eliminated for this input space. Case (b) is the default case, 
in which the function could be positive and negative. In 
this case, the algorithm calculates a heuristic parameter 
(R) that measures the probability that the inputs generate a 
positive function value.  

Concerning the property under verification, it has to be 
transformed into an expression of the form P(X) > ‘0’. For 
example, if we want to verify that the output ‘z’ is never 
greater than 255, the property will be defined as  “z – 255 
> 0”. If case (a) occurs (there is not any value greater than 
0),  the property will be satisfied in the input value space. 
In case (b), an extreme point takes a value greater than ‘0’. 
If this point satisfies all the requirements, we will find a 
counter example that does not satisfy the property. In the 
other case, more searches are needed. Only in this case, a 
heuristic value (P) is calculated that indicates the 
probability that there is a point in which the property is 
greater than ‘0’.  

The algorithm needs a cost function that guide the 
search of the counter-example. It is functions of the 
paramenters R and P, that estimate the existence of points 
that complies the requirements and the property. 

The verification algorithm is a depth-first-search 
algorithm that explores the input value space. For a 
particular input value interval, the algorithm determines 
the hyperplanes that approximate the restrictions and 
properties. If it is not possible to provide a conclusion 
about the property satisfaction (case (c)), a new point 
inside the input value interval is selected. This process will 
generate several new intervals in which it is necessary to 
evaluate requirements and properties. In order to 
determine the interval in which the search will continue, a 
cost function is defined.  

The input space with the maximum “cost” is chosen and 
it is split by the central point of the input space (the 
median value of the range in each one of the inputs). 
Again these zones are studied. The algorithm will finish if 
a counter-example point is found or if there is no any input 
space to study. 

IV. CONCLUSIONS 
In this paper we present a technique for property 

verification in system level descriptions. The 
technique is based on the modified interval analysis 
method which is a better approximation than the 
classical interval analysis. This interval analysis 
technique is one of the main contributions of this 
paper. 

For verification, a first-depth-search based 
algorithm is proposed. Only the basic arithmetic 
operators and the control sentence “if-then-else” are 
considered, but the potential for verifying a system 
can be appreciated.  
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