

Use of Non-linear Solver to Check Assertions of
Behavioral Descriptions

I. Ugarte, P. Sanchez
Microelectronics Engineering Group. TEISA Deparment. ETSIIT. University of Cantabria

{ugarte, sanchez}@teisa.unican.es

Abstract— Verification has become an essential aspect of
design flow because of the increasing design complexity.
According to the latest report of the International Technology
Roadmap for Semiconductor, the challenge will be to develop
new design-for-verifiability techniques and verification
methods for higher levels of abstraction. Several Design-for-
Verifiability methodologies (DFV) have been proposed and
Assertion-based Verification (ABV) is one of the most
promising. In order to automatically verify assertions at the
higher abstraction levels, it is necessary to improve the
performance and capabilities of current constraint solvers.

This paper presents a new technique based on non-linear
solvers that automatically checks assertions in behavioral
descriptions of hardware systems.

 The main contribution of this work is the definition of a
methodology that allows using continuous non-linear solvers to
verify behavioral descriptions. These descriptions are modeled
with a set of integer polynomial inequalities. The technique
provides better results than integer solvers and it is applied to
real designs, such as Viterbi decoders or vocoder digital filters.

Keywords—Assertion Checker, Design for Verifiability, Non-

linear solvers.

I. INTRODUCTION
erification has become the main bottleneck of the

design flow as a result of two processes. Firstly, the
functional complexity of modern designs is continuously
growing. Secondly, the greater emphasis on other aspects of
the design process has produced important progress
(automated tools for logic synthesis, place-and-route, etc),
leaving verification as the main bottleneck that will be a
barrier to further progress in the semiconductor industry if
there is not a major breakthrough (2004 report of the
International Technology Roadmap for Semiconductors
[1]).

Formal verification techniques are beginning to gain
acceptance and they sometimes complement simulation
methods in the process of verification. The main goal of
formal hardware verification is to prove the functional
correctness of a design instead of simulating some vectors.
Traditionally, formal techniques are classified into three
groups: equivalence checking, model checking and theorem
proving technique. Most of these methodologies use
Boolean equations to model some aspects of the design.

Popular techniques to solve these Boolean equation
systems (or satisfiability problems) are based on Binary
Decision Diagrams (BDD) [2]. BDDs are used to represent
binary output value constraints in a canonical form. The
main disadvantage of the use of BDDs is the “memory
explosion” problem because of the huge size of the diagram

even for medium complexity design. Several optimizations
have been proposed to compress the diagram (OBDD,
ROBDD, etc).

Another way to solve Boolean equations is to use a SAT
solver. This technique avoids the exponential space blow-up
of BDD [3]. The main drawback is the handing of
arithmetic operators. These operators are transformed into a
large number of Boolean formulas which reduce the SAT
efficiency and limit its application domain. To overcome
these disadvantages, hybrid satisfiability approaches, such
as HSAT [4], have been proposed. The goal is to combine a
SAT and a linear programming solver. The SAT checker is
used to solve the logic equations and the linear
programming solver is used to check the feasibility of the
arithmetic equations. These two engines operate in separate
domains. The performance of HSAT is limited by the
heuristics that choose the set of assignments to Boolean
variables. Other similar approaches (e.g. LPSAT [5]) are
based on mixed integer linear programming (MILP)
techniques [5]. However, general ILP solvers tend to be
inefficient in solving real satisfiability problems. Firstly,
they do not directly handle nonlinear operators (multipliers).
Secondly, they have numerical convergence problems, and
they are sensitive to a number of internal parameters. Other
tools are based on Constraint Logic Programming (CLP)
techniques [6]. The CLP works at Boolean level and/or
Integer domain and it has similar problems to MILP
techniques.

This paper presents a different approach to the
verification of designs that are modeled with Boolean
equations and/or non-linear expressions. The technique is
based on a commercial global non-linear solver. The goal of
this type of solver is maximizing a non-linear equation (the
assertion equation in this paper) while satisfying a set of
non-linear constraints that model conditional statements and
discontinuous functions in this work. The commercial solver
LINDO [7] is an example of a global non-linear solver and
it has been used in this work. It has an Application
Programming Interface (LINDO API) that has been
designed to solve a wide range of optimization problems,
including linear programs, mixed integer programs and
general nonlinear non-convex programs. The global
optimizer of LINDO API uses branching to split the feasible
region into subregions and bounding to obtain a valid bound
on the optimal objective value in each region. This type of
solvers has problems with integer equation systems because
integer variables introduce non-smooth problems, thus
memory and solution time may rise exponentially with
them.

V

In order to avoid this problem, the proposed verification
methodology uses the non-linear solver in the real domain
(maximum efficiency and minimum CPU time and memory
requirements) and defines a new technique to find integer
solutions from the real-domain solver results. The main
advantages of the proposed verification techniques are the
efficient handling of non-linear systems and the relatively
low CPU requirements.

II. SYSTEM MODELING
In this paper the hardware system is described at

behavioral level as a set of concurrent processes. The
proposed verification technique is focused on individual
process validation, thus only one process will be considered.
This process is suspended in an initial wait statement until
the input values change. After this, the process body is
executed until the initial statement (wait statement) is
reached. Figure 1 shows this behavior. The straight arrows
model the external inputs (Xi) and the outputs (Zi). The gray
box represents the ‘wait’ statement and the dashed line the
memories or state variables (Ii). The dotted lines represent
the execution paths (functionality) of the process.

 X1 X2 X3

Z1

I1

Fig. 1. System Model.

The model includes integer variables and the directly

supported operators are addition, subtraction, multiplication,
and relational. Other operators have to be transformed into
equivalent polynomial equation systems. For example, the
modulus operation (D%N) is transformed into the following
integer equation system:

[]⎪
⎩

⎪
⎨

⎧

−+−∈
>=

+×=
⇒=

1,1
0_*

_
%

NNA
QuotientDA

ANQuotientDD
NDA (1)

It is assumed that all the previous equations take integer
values.

Other operators (e.g. bit selection, bit-wise logic operator,
etc) are transformed in a similar way.

Word-level logic operators (e.g. “or reduce”) and bit-level
logic operations are transformed into integer polynomials.
For example, the logic equation “a = b or c” is transformed

into “a = b + c - (b*c).
Concerning control statements, conditional ‘if’ statements

are totally supported. Every conditional statement is
transformed into a two-equation system (see figure 2). A
new variable (K) identifies the selected path. This integer
control variable takes values in the range [0, 1]. When the
variable takes the value ‘1’, the ‘true’ path is activated
(C=f1). When the variable takes the value ‘0’, the ‘false’
path is chosen (C=f2).

if(A > B) then
 C = f1;
else
 C = f2;
end if;

K *(A – B) + (1-K)*(B – A + 1) > 0

C = K*f1+ (1 – K)*f2;
K ∈ [0, 1]

Fig. 2. Model of the conditional statement.

Finally, the loop operators are handled with restrictions.

The ‘for’ loops are totally unrolled when the number of
iterations can be statically determined. Figure 3 shows an
example. During the unrolling process, several variable
assignations are modified. For example, the ‘x’ and ‘y’
variables of figure 3 change in every iteration, thus new
variables (x1,…,x4, y1,…,y4) are defined to model the
intermediate values. Additionally, only the last iteration
output assignments are translated (r variable in figure 3).

for(i = 0; i < 4; i++)
 x = y + 5;
 y = x + z;
 r = y*z;
end for;

x1 = y + 5;
y1 = x1 + z;
x2 = y1 + 5;
y2 = x2 + z;
x3 = y2 + 5;
y3 = x3 + z;
x4 = y3 + 5;
y4 = x4 + z;
r = y4*z;

Fig. 3. Model of the for statement.

The ‘while’ loops cannot normally be totally unrolled
because it is not possible to statically determine the number
of iterations. In this case, the algorithm will unroll a new
iteration in every step. This means that the algorithm will
unroll one iteration in the first step, two in the second and it
will repeat the process up to a user-defined maximum
number of iterations. If several ‘while’ loops are nested, the
number of unrolled statements will grow exponentially.

With the previously commented transformation, the
process body (dotted line in figure 1) will be modeled with
polynomials whose input space will change in every process
execution. The assertion to be checked and the conditional
statements will be modeled with polynomial inequalities.

III. SYSTEM MODELING EXAMPLE
In this section, the generation of the polynomial model of

a typical communication system component (a Viterbi
decoder) is presented. This set of polynomial equations can

be solved by the LINDO API package. The Viterbi decoder
is a common component of forward-error-correction (FEC)
modules.

Typically, a Viterbi decoder algorithm has four steps [8]:
determine branch metrics, accumulate path distances,
normalize path distances and determine the survivor path
with a trace back algorithm that extracts the decoded
symbols.

A simple Viterbi decoder will be presented in this section.
It receives two inputs (x and y) whose probabilities of
taking value ‘1’ (or likelihood) are represented by a value in
the range [0,255]. The Trellis diagram will only have 4
nodes in each slice, thus only 8 branches are possible.
Figure 4 presents the behavioral description of the branch
metric calculation (first step of one iteration of the Viterbi
decoder) on the left. On the right, the figure presents the
equivalent polynomial model of the system

M0 = x + y;
M1 = x + (255 – y);
M2 = (255 – x) + y;
M3 = (255 – x) + (255 – y);

x + y – M0 = 0;
255 + x – y – M1 = 0;
255 – x + y – M2 = 0;
510 – x – y – M3 = 0;

Fig. 4. Model of first part of the Viterbi decoder algorithm.

Figure 5 presents the behavioral description of the second

step of the Viterbi algorithm (accumulate path distance) on
the top. On the bottom, it presents the set of polynomial
equations that models it. The ‘for’ loop has been totally
unrolled and the conditional statements have been converted
into polynomial inequalities.

Other steps of the Viterbi algorithm are transformed in a
similar way. As a conclusion, an iteration of the Viterbi
decoder with two inputs and four Trellis nodes is
transformed into a set of 28 polynomial restrictions (or
inequalities) and 32 internal variables.

IV. VERIFICATION METHODOLOGY
The goal of the proposed verification technique is to find

a point that fulfills the set of integer inequalities that model
the hardware system and violates an assertion. Three steps
have been defined (figure 6):

1.- Polynomial model generation
The behavioral description is transformed into an

inequality system that can be handled mathematically. In
order to reduce the complexity of the problem, the
discontinuous functions (conditional statements, round
operators,…) are transformed into a series of expressions
with a collection of additional variables and constraints (see
section II). Integer variables are also transformed into real
variables, although they are not mathematically equivalent
(non-linear problem relaxation). These modifications allow
the use of an efficient non-linear solver based on function
derivatives.

2.- Solve the inequalities system
A non-linear solver is used to find a solution in the real

domain. If there is a real solution, an algorithm that finds an

integer solution has to be applied (step 3). If there is no real
solution and the input description has “while” statements, a
new iteration of a ‘while’ loop will be added to the
polynomial system description before executing step 2
again. In order to limit this unrolling process, the user
defines the maximum number of iterations that a ‘while’
loop can be unrolled. If there is no real solution and the
loop-unrolling limit is reached, the system cannot have an
integer solution, thus the system will fulfill the assertions
until the pre-defined unroll limit.

for (J=0; J < 3; J++) {
 switch (J) {
 case 0:
 upper_branch_distance(J) := M0 + current_distance(0);
 lower_branch_distance(J) := M3 + current_distance(2);
 break;
 case 1:
 upper_branch_distance(J) := M3 + current_distance(0);
 lower_branch_distance(J) := M0 + current_distance(2);
 break;
 case 2:
 upper_branch_distance(J) := M1 + current_distance(1);
 lower_branch_distance(J) := M2 + current_distance(3);
 break;
 case 3:
 upper_branch_distance(J) := M2 + current_distance(1);
 lower_branch_distance(J) := M1 + current_distance(3);
 break;
 };
 if(upper_branch_distance(J) <= lower_branch_distance(J))
 new_distance(J) := upper_branch_distance(J);
 else
 new_distance(J) := lower_branch_distance(J);
};

-- Modeling of ‘for’ sentences
// J = 0
M0 + current_distance0 – upper_branch_distance0 = 0;
M3 + current_distance2 – lower_branch_distance0 = 0;
K0*(l_b_d0 - u_b_d0) + (1 – K0)*(u_b_d0 - l _b_d0) > 0;
K0*l_b_d0 + (1 – K0)*u_b_d0 - new_distance0 = 0;
// J = 1
M3 + current_distance0 – upper _branch_distance1 = 0;
M0 + current_distance2 – lower_branch_distance1 = 0;
K1*(l_b_d1 - u_b_d1) + (1 – K1)*(u_b_d1 - l _b_d1) > 0;
K1*l_b_d1 + (1 – K1)*u_b_d1 - new_distance1 = 0;
// J = 2
M1 + current_distance1 – upper _branch_distance2 = 0;
M2 + current_distance3 – lower_branch_distance2 = 0;
K2*(l_b_d2 - u_b_d2) + (1 – K2)*(u_b_d2 - l _b_d2) > 0;
K2*l_b_d2 + (1 – K2)*u_b_d2 - new_distance2 = 0;
// J = 3
M2 + current_distance1 – upper _branch_distance3 = 0;
M1 + current_distance3 – lower_branch_distance3 = 0;
K3*(l_b_d3 - u_b_d3) + (1 – K3)*(u_b_d3 - l _b_d3) > 0;
K3*l_b_d3 + (1 – K3)*u_b_d3 - new_distance3 = 0;

Fig. 5. Model of second part of the Viterbi decoder algorithm.

The solver provides partial results of the inequality

system solution. If one of these partial results violates the
assertion and fulfils the inequalities, the solver will be
aborted and the partial solution will be used as a possible
counterexample. The goal of the solver is to find the point
that maximizes the equations. Our goal is to find a point that
fulfils them, thus the solver is aborted as soon as a partial
solution is detected with an important reduction of the
solver execution time.

 STEP 2:
Solve the equations

 STEP 3:
Derive an integer solution

 STEP 1:
Polynomial Model Generation

Counter-Example
exists?

YES

More ‘while’
iterations?

NO

Counter-Example

YES

YES Assertions always
verify

NO

Behavioural
Description

Counter-Example
exists ?

NO

Fig. 6. Verification Methodology.

3.- Derive an integer solution from the real solution
The goal is to find an integer solution taking into account

the information that the real-domain solution provides. The
technique defines two steps: variable rounding and branch-
and-bound exploration of the solution space.

The first step is to round the real variables to the closest
integer value. If there are 2 possible values (for example,
11.50 could be rounded to 11 or 12), a value will be
randomly selected. Figure 9 presents the decisions that the
integer-solution searcher algorithm takes with the figure 7
example. In this figure, the type uint8 models an integer
with range 0 to 255. The ‘space3’ assertion verifies that the
‘ret’ variable is never greater than 340. In figure 9, the
ranges of the inputs are included in ellipses. The rectangular
forms contain the solutions that the solver provides in the
real domain and the hexagonal forms, the rounded integer
points.

void space3 (uint8 x, uint8 y, uint8 z)
{
 int temp, dat, ret;

 dat = (x – 110)2 – (y – 28)2;
 temp = dat – (z – 170)2;
 if (10000 > temp)
 if (6*y – 2*x – 4*z > 0)
 ret = x + y + z;
 else
 ret = 0;
 ….
 Assertion ret ≤ 340;

}

Fig. 7. ‘Space3’ example.

The non-linear solver provides a first solution (x=95.434,
y=118.148 and z=129.255) that is rounded by the searcher
algorithm (top hexagonal form) to an infeasible solution (the
assertion is not violated or the inequalities are not fulfilled
with the top hexagonal form values).

In this case, the second step (branch-and-bound based
exploration) is applied. Firstly the farthest value from an
integer is selected. In Figure 9, the farthest value is 95.434,
thus variable x is selected. Secondly, the input space of the
selected variable is split into two parts: values greater than
the integer part (x>95) of the solution and values less than
or equal to the integer part (x<=95). This generates two new
set of polynomial inequalities. These sets are solved with
the non-linear solver, thus two new set of solutions and
maximum values of the assertion can be generated. If a new
set has no solution, its branch will be removed. The
algorithm will select the set that produces a higher assertion
value and it will repeat the searching process. This process
will be finished in a branch if one of these conditions is
verified:

1.- The solver cannot find a solution, thus the problem is

infeasible.
2.- The solver provides a solution, but the assertion is

always verified.

In these cases, the current branch will be removed and the

last unselected branch will be selected. This process is
repeated until a counterexample is found or all the branches
are removed (the assertion is always fulfilled).

V. EXPERIMENTAL RESULTS
 In order to validate the proposed technique, two

examples at behavioral level have been proposed. The first
example is the ‘Pre_Process’ module of the GSM standard
(ETSI EN 301.245, December 1997). This module is a
second order high pass IIR digital filter with cut off
frequency at 80 Hz and 4 taps. Two assertions have been
inserted into the code. The first assertion verifies that the
accumulated values are not saturated. The second assertion
checks if the accumulated values are again saturated after a
previous saturation.

The second example is the previously commented Viterbi
decoder algorithm. It is a soft decoder with a rate of ½, a
constraint length of 3 and a survivor window length of 16.
The inserted assertion checks if there is overflow in the
maximum value of the path metric accumulator

The CPU times in Table III correspond to seconds on a
Pentium IV with 2 GB of RAM at 2.8 GHz under Windows
XP.

Table I shows the results of the verification of the first
assertion of the GSM filter. The first column shows the
number of execution of the process, the second column is
the number of the inputs. The range of the inputs is [-32768,
32767]. The third and fourth columns are the number of
integer variables and restrictions that model the behavioral
description. The last column is the time, in seconds, that the
proposed algorithm takes to obtain a result. During the first
21 iterations, the filter values are not saturated and the

assertion is verified. In the 22nd-iteration, a counter example
is found.

TABLE I
RESULT OF THE FIRST ASSERTION OF THE FILTER.

Iteration #input
s

#variable
s #restrictions Time

1 1 3 4 0
2 2 10 8 0
3 3 18 15 0
4 4 26 22 0
5 5 34 29 0
6 6 42 36 0
7 7 50 43 1
8 8 58 50 0
9 9 66 57 0

10 10 74 64 0
11 11 82 71 0
12 12 90 78 12
13 13 98 85 8
14 14 106 92 2
15 15 114 99 40
16 16 122 106 38
17 17 130 113 30
18 18 138 120 64
19 19 146 127 74
20 20 154 134 66
21 21 162 141 133
22 22 170 148 21

The other assertion checks the second saturation after the

first one (22 nd –iteration). The proposed methodology has
found a second overflow at the 35th-iteration. It is
interesting to analyze the evolution of the execution time of
the non-linear solver (figure 8). Due to the heuristic
algorithms that the solver uses, the execution time does not
have a “common pattern” and it is very different for close
problems. For example, the solver takes more than 9000
seconds to find a solution in iteration 33 but it only needs 33
seconds to solve iteration 34.

73
35

53

243

1569

38

287

20 17

69

9000

33
17

1

10

100

1000

10000

23 24 25 26 27 28 29 30 31 32 33 34 35

Iteration

Ti
m

e
(s

ec
)

Fig. 8. Result of the Second Assertion of the filter.

The results of the Viterbi verification are shown in table
II. In this case, the algorithm always fulfills the assertion.
Some variables have been added to model the control
statements.

In order to evaluate the methodology, the proposed
examples have been checked with a commercial integer

non-linear solver. This solver provides solution for only 2
iterations of the GSM filter and it is not able to solve an
iteration of the Viterbi decoder.

TABLE II

RESULT OF THE ASSERTION OF THE VITERBI DECODER.
Iteration #inputs #variables #restrictions Time

1 2 32 28 0
2 4 65 58 0
3 6 98 88 1
4 8 131 118 1
5 10 164 148 2
6 12 197 178 3
7 14 230 208 4
8 16 263 238 5
9 18 296 268 7
10 20 329 298 8
11 22 362 328 10
12 24 395 358 11
13 26 428 388 14
14 28 461 418 16
15 30 494 448 19
16 32 527 478 21

VI. CONCLUSIONS AND FUTURE WORK
In this paper, a method to check assertions at behavioral

level is presented. The behavioral description is transformed
into a set of polynomial inequalities. The proposed
methodology is able to derive an integer solution
(counterexample) for this inequality set. The technique is
based on a commercial non-linear solver that provides a
real-domain solution that is used to find an integer solution
of the problem. The proposed methodology is able to handle
efficiently complex descriptions that cannot be directly
checked with integer non-linear solver.

The future work includes the automatic generation of the
polynomial inequality set from high-level HDL (for
example, SystemC) and the extension of this technique to
concurrent descriptions.

REFERENCES
[1] “The International Technology Roadmap For Semiconductor”. 2004

Edition. Design.
http://www.itrs.net/Common/2004Update/2004_01_Design.pdf

[2] R.E.Bryant, “Graph Based Algorithms for Boolean Function
Manipulation”, IEEE Transactions on Computers, vol. C-35, pp. 677-
691, August 1986.

[3] A. Biere, A.Cimatti, E.M.Clarke, M. Fujita, Y. Zhu, “Symbolic Model
Checking Using SAT procedures instead of BDDs*”. Proc. Of
DAC’99. 1999.

[4] F. Fallah, S. Devadas, and K. Keutzer, “Functional Vector Generation
for HDL models using Linear Programming and 3-Satisfiability
Infrastructure using the Unite Recursive Paradigm”, in Proc. Of
DATE 2000, 2000, pp. 232 – 236.

[5] Z. Zeng, P.Kalla, and M. Ciesielski, “LPSAT: A unified approach to
rtl satisfiability”, in Proc. DATE, March 2001, pp. 398-402.

[6] Zeng Z., Ciesielski M., and Rouzeyere B., “Functional test generation
using constraint logic programming”, in VLSI-SOC Conference,
2001.

[7] LINDO API., www.lindo.com, Lindo Systems Inc.
[8] John P. Elliott, “Understanding Behavioral Synthesis. A Practical

Guide to High-Level Design”, Kluwer Academic Publishers, 2000.

http://www.itrs.net/Common/2004Update/2004_01_Design.pdf
http://www.lindo.com/

Fig. 9. Steps of the algorithm to find the integer solution in the ‘space3’ example.

	INTRODUCTION
	System modeling
	System Modeling Example
	Verification Methodology
	Experimental Results
	CONCLUSIONS AND FUTURE WORK

