

Abstract— In order to confront the verification of more and
more complex Systems, several Design-for-Verification
methodologies (DFV) have been proposed. One of them,
Assertion-based Verification (ABV) has recently emerged as
the functional verification methodology capable of keeping
pace with increasingly complex systems.

This paper presents an ABV technique that automatically
searches for counter-examples that violate user specified
assertions in behavioral descriptions of hardware systems. The
main contribution of this work is an assertion checking
algorithm that allows applying interval-based techniques to
cyclic descriptions while reducing path explosion problems.

Index Terms—Interval Arithmetic, Assertion Checker,

Design for Verification.

I. INTRODUCTION

he 2003 International Technology Roadmap for
Semiconductors (ITRS) affirms that “Verification has

become the dominant cost in the design process” and
“Design conception and implementation are becoming mere
preludes to the main activity of verification” [1]. Some
studies show that up to 70% of the RTL design effort is
spent on making sure that their chips meet specifications
and perform as intended [2]. In order to reduce the
verification cost several new “Design for Verification”
(DFV) methodologies have been proposed. One of the most
promising DFV methodologies is “Assertion-based
Verification” (ABV) [4]. An assertion is a precise
description of what behavior is expected. The main goal of
an ABV technique is to verify that the user-specified
assertions are not violated. Several dynamic (simulation-
time assertion checking) and/or static (assertion checkers)
methods have been proposed [14].

Additionally, the use of higher levels of abstraction
allows many forms of verification to be performed much
earlier in the design process, reducing time to market and
lowering cost by discovering problems earlier [2][3]. In this
context, several works have proposed polynomial-based
specification models that allow representing arithmetic and
logic operations and checking system properties and
parameters [5][6][7].

In order to check properties of systems described with
polynomials, a lot of constraint solvers and global
optimizers have been proposed [15]. Some of them are
based on Interval Analysis and they have mainly been used

for power and timing analysis of software processes [8][9]
and assertion checking [13].

One of the problems of these tools is to verify systems
with cycles. Loops are basic control elements, commonly
used in system descriptions, but they introduce important
verification problems. For example, multimedia applications
normally have a large number of loops. The verification by
means of pseudo-exhaustive simulation in a workstation or
(parallel) DSP board can be impossible due to the large
amount of memory necessary [10]. Formal techniques (e.g.
theorem provers, model checkers) could verify simple
systems but they need too much designer knowledge to be
automated and they are not able to verify medium size
designs. Other BDD-based methods [12] have been
proposed (like symbolic simulation [11]) but the verification
effort grows so fast that the algorithm explodes even for
medium size problems.

This paper presents a static assertion checking technique
for hardware behavioral models, which are modeled with
polynomials. The algorithm generates vectors automatically
to detect the violation of the assertion. If no counter-
example is found, the assertion is fulfilled by the
description. The technique is based on a modified Interval
Analysis and it reduces the verification effort because there
is no need to explicitly unroll loops.

MODified Interval Analysis (MODIA) [13] is able to find
an input space that violates some assertions while verifying
all the control statements (if-then-else structure) of the path,
which fulfils the assertion. The proposed verification
algorithm expands interval analysis to handle cyclic
descriptions without the need of explicitly unrolling the
loops.

After this introduction, the hardware system description
methodology is presented in section 2. Section 3 describes
the interval analysis oriented modeling of control
statements: conditional (“if-then-else”) and endless loop
(process) structures. Section 4 presents the verification
algorithm and in section 5, an example is presented. Finally,
experimental results and some conclusions and future work
are commented.

II. SYSTEM MODELING

In this approach the hardware system is described at
behavioral level as a set of concurrent processes. The
proposed verification technique is focused on individual
process validation, thus only one process will be considered.
This process is suspended in an initial wait statement until

Assertion Checking of Cyclic Behavioral
Descriptions

I. Ugarte, P.Sanchez
Microelectronics Engineering Group. TEISA Department. ETSIIT. University of Cantabria

Avda. los Castros s/n. 39005 Santander. Cantabria. Spain
{ ugarte, sanchez }@teisa.unican.es

T

the input values change. After this, the process body is
executed until the initial statement (wait statement) is
reached. The process is suspended in this statement until the
input values change again (Fig. 1 shows this behavior). The
straight arrows model the external inputs (Xi) and the
outputs (Zi). The gray box represents the ‘wait’ statement
and the dashed line the memories or state variables (Ii). The
dotted lines represent the execution paths (functionality) of
the process. Depending on the number of state variables, the
process can be classified as:

a) Process without memory, when there are no memories
or state variables.

 b) Process with memory, when there are state variables.

The model only considers integer variables and the
supported operators are addition, subtraction, multiplication
and relational. Word-level logic operators (e.g. “or reduce”)
and the bit-level logic operations are transformed into
integer polynomials and other operators (e.g. dividers) are
supported with common RT-synthesis restrictions.
Concerning control statements, the conditional ‘if’
statements are totally supported and the loop statements are
supported with restrictions: only one loop (process loop) is
supported during analysis, thus other loops have to be
statically unrolled.

The process body (dotted lines in Fig. 1) is modeled with
polynomials whose input space changes in every iteration.
The assertions to be checked will be modeled with
polynomial inequalities. In order to verify the assertions of
the process, it is not necessary to unroll the loop; it would
be enough to determine the next input space after iteration is
executed and apply the verification algorithm (with the new
input space) to the loop body.

 X1 X2 X3

Z1

I1

Fig. 1. System Model.

Thus, the proposed technique modifies the ranges of the

process inputs (arrow lines in Fig. 1) every time a new
iteration is executed. The verification process finishes when
the complete input space is analyzed or an assertion is
violated. Inside the process, every execution path in the
behavioral description is described by a set of inequalities
(which model the if-statement conditions and assertion) and
polynomials (which model the path functional behavior).

Fig. 2 shows a simple C-style example with only two paths
in the process (“example” function). The path ‘Then’ has
two inequalities: one to describe the control statement
[Then1] and the other the assertion [Then2]. The other path
(‘Else’) has the complementary inequality of the control
statement [Else1] and the assertion [Else2].

int example (int x, int y) {
 DO {
 Wait until x, y:
 …
 if (5*y > x) {
 // Path Then
 ret = x + y;
 else
 // Path Else
 ret = x*x -y + 25;
 } ...
 } WHILE (true);

 Assertion ret ≤ 255;
}

Constraints:
 X ∈ [0,255];
 Y ∈ [0,255];
…

Path “Then” polynomials:
 [Then1] 5*y - x > 0
 [Then2] x + y - 255 > 0

Path “Else” polynomials:
 [Else1] x - 5*y + 1 > 0
 [Else2] x*x - y + 25 - 255 > 0
…

a) Behavioral description b) Polynomial description

Fig. 2. Polynomial description of a simple example.

The main disadvantage of this approach is that the

number of the paths grows with ‘2n’, where ‘n’ is the
number of conditional statements in the loop, in the worst
case (no-nested conditional statements). ‘Case’ statement,
can be translated into several nesting ‘if-then-else’
structures. If so , the number of paths is equal to the number
of different ‘case’ options.

III. ANALYSIS OF THE LOOP STATEMENTS

The model of loop statement is very important in the
proposed approach, so it will be discussed in this section. In
order to verify assertions inside these structures, two
important properties have to be considered:

1. The loop-body code is equal in all iterations.
2. Every time the loop (or process) is executed (new

iteration), the input space of the loop-body is modified. The
range of the internal variables for the next iteration is
derived from the current iteration results.

A consequence of the first observation is that the same

input and internal variable intervals will produce the same
results. Thus, only the new portions of the resulting
intervals (the new areas of the state variable ranges) have to
be analyzed in the next iteration (second observation).
These new input intervals reflect the differences between
the input spaces of the previous iterations and the current
iteration. A simple example is shown in Fig. 3.

The original input space (N-dimensional) is the vertically
shaded area that represents the state variable ranges. The
external input ranges are not represented because they are
the same in all iterations. The execution of the process body
(first iteration) generates a resultant space that is composed
of horizontally and vertically shaded areas. The vertically
shaded area has already been evaluated in the first iteration,
thus only the horizontally shaded area has to be evaluated in

the second iteration (next input space). This process is
repeated until the third iteration. In this iteration the process
body execution generates a resultant space that is included
in the previously evaluated input spaces. Thus all input
space has been covered and the search step is finished.

The way to detect the conclusion of the verification
process without a counter-example is to explore all the input
space, that is, to reach an iteration in which the resultant
space has already been evaluated. This exploration process
will last a finite time because the hardware variable has a
predefined range (finite number of bits) and every new
iteration reduces the possible new input space.

 Iteration 1 Iteration 2 Iteration 3

State
variables

Process-
Body

 Process-
Body

Process-
Body the same

Fig. 3. Example of input space determination

IV. INTERVAL-BASED SYSTEM-LEVEL
VERIFICATION

In order to verify a process, an interval analysis technique
(MODIA [13], MODified Interval Analysis) is used.

A. The MODified Interval Analysis
 The proposed verification algorithm is guided by this

interval analysis technique. The goal is to calculate the
bounds of an inequality system (one execution path), and
identify input spaces (intervals) that fulfill the inequalities
(the input constraints and ‘if-then-else’ structures) and
violate the assertions. One drawback of this approach is the
overestimation of the bounds. A classical solution to this
problem is to split the original space into several spaces and
apply the interval analysis to them. This reduces the
overestimations but increases the algorithm computation
complexity. In this proposal, this partition effort is used to
find counter-examples (points that violate the assertions).
Fig. 4 shows an example with two inputs: X1 and X2. The
function P(X1, X2) models the property to verify. The gray
areas are input space values that violate the property and the
black points (extremities of intervals) are the input space
points that MODIA evaluates. Using MODIA bounds, the
partition technique selects a space and splits it into two
pieces. During this process, it is possible that a new extreme
point is selected inside a gray box (white point). This point
violates the property, thus it is the target counter example.

Some spaces can be deleted if an inequality is not fulfilled
by all points of the input interval.

XI2

XI1 XS1

XS2

P(X1,X2)

Fig. 4. Evaluated Input Space Points

B. The algorithm
The verification algorithm uses a breadth-first search

(BFS) technique. First, the algorithm takes the complete
process input intervals, and calculates the new intervals of
the internal-variables for each path. The following step is
the elimination of the part of the new ones that has already
been evaluated in the first iteration. In the second iteration,
these new intervals and the original external input intervals
are applied to generate the new internal space. The
evaluated part of this new space is removed. The following
iterations repeat the steps until there is an iteration that
violates an assertion. In this case, all iterations are removed
and the complete space of the first iteration is split into two
pieces to increase the precision of the bounds. The
algorithm resumes the previously commented steps but with
twice as many as the spaces in the first iteration.

Furthermore, the algorithm also calculates the internal
values for each extreme point of the input intervals (they are
the special points to find a counter-example). In the second
iteration, for each new internal value, it calculates the new
interval value for each special point of the external input
intervals. For example, if there are 2 new internal values and
the number of extreme points is 4 (number of external
inputs + 2), the result is 8 new internal values, 4 for each
new internal value. These steps are repeated for all
iterations. If a counter-example is detected, the algorithm is
stopped and the sequence of the inputs is shown.

When the partition of the input interval is done, new
extreme points are added without eliminating the points that
have already been calculated. These new points are
evaluated in the following iterations until reaching the
iteration in which the violation was produced. From this
iteration, all points are considered for the next iterations.

The algorithm pseudo-code is the following:

Assign the special points of complete space as possible

counter-examples.
Violation number = 0;
do {
 If (Violation number > 0) then
 The internal-variable intervals of the different

iterations are removed.

 The space of the first iteration is split.
 Violation number = 0; Iteration number = 0;
 Else
 Evaluate the new extreme points in the iteration i.
 If (there is a counter-example) then
 Finish the algorithm: One counter-example is

found. The assertion is not fulfilled.
 End if;

Loop (for each new internal-variable interval of the
iteration i)

 Loop (for each path)
 Calculate the internal-variable intervals for the

iteration number i + 1.
 If (a violation exists) then
 Violation number = 1;
 End if;
 End loop;
 End loop;
 If (Violation number is equal to zero) then

Eliminate the evaluated part of the internal-
variable intervals of the iteration number i + 1.

 Next iteration: i = i + 1;
 End if;
} while (Violation number is different to zero or there is a

new internal-variable interval of the iteration i or
more).

Finish the algorithm: The assertion is fulfilled over the
whole input interval.

V. EXAMPLE
The example in Fig. 5 has only one process (‘proc’) with

an external input variable, ‘x’, and an internal variable, ‘y’.
The initial value of ‘y’ is also an input of the ‘proc’
function.

int proc (int x, int y) {
 // Constraints: 0≤x≤63, 32≤y≤63
 int temp, ret;
 DO {
 Wait until x;
 temp = (y – 110)2 + (x + 57)2;
 if (temp < 10000)

 if (y ≥ 4*x) // Path
 ret = 2*y;
 else // Path
 ret = x + 2*y;
 y = ret;

 Assert(ret < 256); // Assertion
 } WHILE (true);

}

B

A
[R1]

[A]

[R2]

Fig. 5. Example

The verification algorithm begins with the complete input
process intervals (x ∈ [0,63], y ∈ [32,63]). For each
iteration, the internal variable (y), constraint (R1 and R2),
assertion (A) intervals are determined and the output of the
interval extremities are computed. After 2 iterations, a
possible violation is detected in several paths (framed text)
but no extreme points are counterexamples. These intervals
are shown in Fig. 6 and the evaluated points in the Table I.
The ‘---’ symbol marks input combinations that do not reach

the assertion.

[]
[]63,32

63,0

[]
[]

[]129,191
64,2192
10336,29731

−−
−
−

A
R
R

[]
[]

[]66,191
220,632

10336,29731

−−
−
−

A
R
R

[]126,64∈y

[]189,64∈y

[]
[]126,64

63,0

[]
[]189,126

63,0

[]
[]

[]3,127
127,1872

21124,42961

−−
−
−

A
R
R

[]
[]

[]60,127
188,1262

21124,42961

−
−
−

A
R
R

[]
[]

[]126,3
190,1252

37720,283761

−
−
−

A
R
R

[]
[]

[]186,3
126,1892

37720,283761

−
−
−

A
R
R

Iteration 1 Iteration 2

Path B

Path A

[63,32

[]
[]129,191

64,2192
10336,29731

−−
−

A
R
R

[]
[]66,191

220,632
10336,29731

−−
−

A
R
R

126,64y

189,64y

[126,64

[189,126

[]
[]3,127

127,1872
21124,42961

−−
−

A
R
R

[]
[]60,127

188,1262
21124,42961

−
−

A
R
R

[]
[]126,3

190,1252
37720,283761

−
−

A
R
R

[]
[]186,3

126,1892
37720,283761

−
−

A
R
R

Path B

Path A

Path B

Path A

External Input Interval (’x’)

Internal-Variable Interval (’y’)

Fig. 6. ‘Search’ step

[]
[]63,32

31,0

[]
[]

[]66,160
220,612

8135,29731

−−

−

A
R
R []189,95∈y []

[]189,157
63,0

[]
[]

[]186,59
95,1892
12230,74131

A
R
R

−
−

[]
[]63,32

63,31

[]
[]

[]98,191
92,632

10336,5711

−−
−

A
R
R []157,64∈y []

[]157,64
63,0

[]
[]

[]122,127
188,1572

27944,130691

−
−
−

A
R
R

[63,32

[]
[]66,160

220,612
8135,29731

−−A
R
R 189,95y

[189,157

[]
[]186,59

95,1892
12230,74131

A
R
R

−

Path B

Path B

[63,32

Partition 1

Partition 2

[]
[]98,191

92,632
10336,5711

−−
−

A
R
R 157,64y

[157,64

[]
[]122,127

188,1572
27944,130691

−
−

A
R
R

Path B

Path B

....

....

....

....

Fig. 7. ‘Justification’ step

In order to improve the interval accuracy, the first-
iteration ‘x’-input interval is split into two intervals:
partition 1 (0, 31) and partition 2 (31, 63). Using the interval
analysis algorithm, new intervals are generated (Fig. 7).
Only the BB path is shown to simplify the figure. The
assertion is still violated in both partitions. This analysis
uses the values of several extremities that are shown in
Table II.

TABLE I

Extreme points evaluated in ‘search’ step (fig. 6)
Iteration 1 Iteration 2

Input(x,y) Output(y) Input(x,y) Output(y)
(0,32) 64
(0,63) 126
(63,0) ---
(63,63) ---

TABLE II
Extreme points evaluated in ‘justification’ step (fig. 7)

 (31,32) ---
(0,157) 314 (31,63) 157 (63,157) 377

One of these points (first iteration x=31, y=63; second

iteration x=63) violates the assertion, thus a counter-
example has been detected and the algorithm finished.

VI. EXPERIMENTAL RESULTS
 In order to validate the proposed technique, two sets of

examples have been proposed. The first set (4 examples)
includes data-dominated examples without memory, and the
second set (2 examples) includes examples with memory
(internal variable ‘D’). The C-like example codes are shown
in the appendix. The CPU times in Table III correspond to
seconds on a Pentium III with 256 MB of RAM at 300 MHz
under Windows 2000. In the case of the “BerkMin” tool, the
CPU times of the first column correspond to Sun Fire V120
Ultra Sparc Iii with 512 MB of RAM running at 550 Mhz.

The examples without memory are used to compare the
algorithm with classical model checking tools (SMV[14])
and a SAT tool (BerkMin 5.6[15]). The results are presented
in Table III(a). It shows the CPU time that the tools need to
generate a correct answer. The term OFL (Out of Limit)
normally identifies situations in which the program was
aborted because the computer does not have enough
memory resources. The tool ‘SMV’ is able to verify simple
designs but the main disadvantage is that it runs “out of
limit” (OFL) when the size of the input space grows. The
“BerkMin” SAT results are presented in two columns. The
first shows the “Sun Workstation” execution time that a
synthesis tool (Synopsys Design Compiler) needs to
generate the Conjunctive Normal Form (CNF). The second
column shows the time that BerkMin needs to find the
correct solution. The last column shows the proposed
Assertion Checker results.

TABLE III

Comparison with property checkers.
BerkMin SMV

Synt. Verif.
Assertion
Checker

Simple 84s 180 s <1s 1 s
Conditional OFL 240 s 1s 1 s
Space3 OFL 240 s 1s 8 s
Space4 OFL 1020 s 36s 24 s

(a) Acyclic description

 SMV Assertion
Checker

Number of Evaluated
Iterations

Linear < 1s 1 s 10
Nonlinear 4.42 s 1 s 5

(b) Cyclic descriptions

The other set (examples with memory) is executed by the
tool ‘SMV’ and the proposed Assertion Checker. The
results are shown in Table III(b). The tool ‘SMV’ needs to
unroll the loops to handle them, while the proposed tools
handle loops without unrolling.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, a method to check assertions at behavioral

level is presented. The technique is based on a modified
interval analysis (MODIA) that can be directly computed
over the CDFG. In this way, the algorithm has been
extended to handle processes (cyclic description) without
unrolling. The algorithm can also be used to automatically
generate functional vectors that exercise predefined paths or
assertions. These vectors could be used to increase
functional coverage metrics or random test generation.

The advantage of this method is the efficiency of
handling data-dominated algorithms independently of the
range of the data. However, the main disadvantage is the
explosion of the number of paths with the number of ‘if-
then-else’ structures.

During cyclic description verification, the algorithm
looks for possible input combinations that violate an
assertion taking into account all conditional paths. Thus, the
memory consumption grows when the number of iterations
increases. In future work, the depth-first search will be
implemented to solve this problem. Additionally, heuristic
metrics based on statistical probabilities will be used to
choose the path with highest probability to reach a violation.

REFERENCES
[1] “The International Technology Roadmap For Semiconductor”. 2003

Edition. Design. http://public.itrs.net/Files/2003ITRS/Home2003.htm
[2] Emil Girczyc. “Assertion-based verification streamlines design

outsourcing”. EEDesign, October25, 2002.
[3] R. Schutten. “Raising the Level of Abstraction Reduces Verification

for System on Chip”. The Synopsys Verification Avenue Technical
Bulletin. Vol.3, issue 3, August 2003.

[4] A. de Geus. “Design for Verification: A new Paradigm”. DVCon
2003 Keynote. Feb 2003.
http://www.synopsys.com/corporate/exec_presentation/2003/DVCon2
003_aart.pdf

[5] J. Smith and G. DeMicheli, “Polynomial Methods for Allocating
Complex Components”, DATE99, 1999.

[6] J. Smith and G. DeMicheli, “Polynomial Methods for Component
Matching and Verification”, Proc. of ICCAD’98 Conference. 1998.

[7] P. Sanchez, S. Dey, “Simulation-based System-level Verification
Using Polynomials”, HLDVT’99. 1999.

[8] D. Ziegenbein, F. Wolf, K. Richter, M. Jersak, R. Ernst, “Interval-
Based Analysis of Software Processes”, LCTES’01, PAGES 94-101,
Snowbird, Utah, USA, June 2001.

[9] B.G. Ryder and M. C. Paull, “Elimination Algorithms for Data Flow
Analysis”, ACM Computing Surveys, Vol. 18, No. 3, September
1986, 277-316.

[10] M. Čupák, F. Catthoor, and H. De Man, “Efficient Functional
Validation of System-Level Loop Transformations for Multi-media
Applications”, HLDVT 98, IEEE CS Press, 1998, p. 72-79

[11] D. W. Currie, A. J. Hu, S. Rajan, “Automatic Formal Verification of
DSP Software”, DAC 2000, pp. 130-135.

[12] S. Minato, “Generation of BDDs from Hardware Algorithm
Descriptions”, ICCAD’96.

[13] I. Ugarte, P. Sanchez, “Functional Vector Generation for Assertion-
based Verification at Behavioral level Using Interval Analysis”,
HLDVT’03. 2003.

[14] K. L. McMillan, “Symbolic Model Checking: An approach to the
State Explosion Problem”. Kluwer Academic. 1993.

[15] E. Goldberg, Y. Novikov, “BerkMin: a Fast and Robust Sat-Solver”,
DATE’02. 2002.

[16] Verification tools:
ttp://www.haifa.il.ibm.com/projects/verification/sugar/tools.html

[17] NEOS Solvers: ttp://www-neos.mcs.anl.gov/neos/server-solvers.html

APPENDIX

A. Examples without memory
The type ‘uint8’ is an integer with range 0 to 255.

void simple (uint8 x, uint8 y)
{
 int temp, dat, ret;

 temp = (x – 110)2;
 dat = (y – 42)2 + temp;
 if (dat < 10000)
 {
 if (5*y > x)
 ret = x + y;
 else
 ret = x + y;
 }
 ….
 Assertion ret ≤ 255;
}

void space4 (uint8 x, uint8 y, uint8 z, uint8 t)
{
 int temp, ret;

 temp= (x – 40)2 + (y – 28)2 + (z – 170)2;
 if(10000 > temp)
 temp= (x – 6)2 - (y – 120)2 + (t – 70)2 + 28;
 if (2500 > temp)
 temp= x2 + 3*y*z2 – t2*z – 292*t3;
 if (temp > 0)
 temp= 6*y*x – 2*x4 – z3*x + 15*x2*y2;
 if(temp>0)
 temp= x*z*t + y*t2 – t3;
 if(temp>249)
 ret= t*x*y2 – 8*z3;
 else
 ret = 0;
 …. Assertion ret ≤ 0;

}
void space3 (uint8 x, uint8 y, uint8 z)
{
 int temp, dat, ret;

 dat = (x – 110)2 – (y – 28)2;
 temp = dat – (z – 170)2;
 if (10000 > temp)
 if (6*y – 2*x – 4*z > 0)
 ret = x + y + z;
 else
 ret = 0;
 ….
 Assertion ret ≤ 340;
}

void conditional (uint8 x, uint8 y)
{
 int temp, dat, ret;

 temp = (x – 40)2;
 dat = (y – 42)2 + temp;
 if (10000 > dat +2*x-y)
 temp= 6*y – 2*x – 4*(10000 – dat);
 else
 temp= x – 3*y +10000 – dat – 49;
 ret(x – y + temp);
 ….
 Assertion ret ≤ 1140;
}

B. Examples with memory

D = D/2; D = D2 – 10;

D ∈ [18, 29]

Temp = 3600 – (D-30)2 – (A-55)2

Wait A (A ∈ [4, 12])

Temp > 0 0 1

Property:
D ≤ 4850

Non-linear

Number of external variables: 1
Number of state variables: 1

D = D + 4;

D > A0 1

Property:
D ≤ 94

Wait A (A ∈ [10, 35])

D ∈ [3, 25]

D = D + 7;

Linear

Number of external variables: 1
Number of state variables: 1

