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Abstract— This paper presents some optimizations of a 

verification technique based on non-linear solvers. The optimized 
solver is able to automatically check assertions in behavioral 
descriptions of hardware systems. These descriptions are 
modeled with a set of integer polynomial inequalities. The 
techniques have been evaluated with real electronic systems, such 
as Viterbi decoders or vocoder digital filters. 
 

Index Terms—Assertion-based-Verification (ABV), non-linear 
solver, property checking.  

I. INTRODUCTION 
ccording to the 2004 report of the International 

Technology Roadmap for Semiconductors [1], 
Verification has become the main bottleneck of the design 
flow as a result of two processes. Firstly, the functional 
complexity of modern designs is continuously growing. 
Secondly, the greater emphasis on other aspects of the design 
process has produced important progress (automated tools for 
logic synthesis, place-and-route, etc), leaving verification as 
the main bottleneck that will be a barrier to further progress in 
the semiconductor industry if there is not a major 
breakthrough. 

Formal verification techniques are beginning to gain 
acceptance and they sometimes complement simulation 
methods in the process of verification. The main goal of 
formal hardware verification is to prove the functional 
correctness of a design instead of simulating some vectors. 
Most of the formal verification methodologies use Boolean 
equations to model some aspects of the design. 

Popular techniques to solve these Boolean equation systems 
(or satisfiability problems) are based on Binary Decision 
Diagrams (BDD) [2]. BDDs are used to represent binary 
output value constraints in a canonical form. The main 
disadvantage of the use of BDDs is the “memory explosion” 
problem because of the huge size of the diagram even for 
medium complexity designs. Several optimizations have been 
proposed to compress the diagram (OBDD, ROBDD, etc). 

Another way to solve Boolean equations is to use a SAT 
solver. This technique avoids the exponential space blow-up 
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of BDD [3]. The main drawback is the handing of arithmetic 
operators. These operators are transformed into a large 
number of Boolean formulas which reduce the SAT efficiency 
and limit its application domain [11]. To overcome these 
disadvantages, hybrid satisfiability approaches, such as HSAT 
[4], have been proposed. The goal is to combine a SAT and a 
linear programming solver. The SAT checker is used to solve 
the logic equations and the linear programming solver is used 
to check the feasibility of the arithmetic equations. These two 
engines operate in separate domains. The performance of 
HSAT is limited by the heuristics that choose the set of 
assignments to Boolean variables. Other similar approaches 
(e.g. LPSAT [5]) are based on mixed integer linear 
programming (MILP) techniques [5]. However, general ILP 
solvers tend to be inefficient in solving real satisfiability 
problems. Firstly, they do not directly handle nonlinear 
operators (multipliers). Secondly, they have numerical 
convergence problems, and they are sensitive to a number of 
internal parameters. Other tools are based on Constraint Logic 
Programming (CLP) techniques [6]. The CLP works at 
Boolean level and/or Integer domain and it has similar 
problems to MILP techniques. 

Non-linear solvers make it possible handle behavioral 
descriptions with non-linear expressions (multiplier operation) 
without transforming them into linear expressions. This 
advantage of the non-linear solvers is well known in handling 
complex systems [10]. Starting from this point, this paper 
presents different optimizations of a verification technique 
based on a commercial global non-linear solver [7]. These 
optimizations modify the polynomial model that the solver has 
to solve and study different selection algorithms to find the 
integer point (counter-example). These optimizations improve 
the efficient handling of non-linear systems and the CPU 
requirements.  

 

II. SYSTEM MODELING 
The hardware system is described at behavioral level as a 

set of concurrent processes. The proposed verification 
technique is focused on individual process validation, thus 
only one process will be considered. This process is 
suspended in an initial wait statement until the input values 
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change. After this, the process body is executed until the 
initial statement (wait statement) is reached (reactive system). 
Figure 1 shows this behavior.  
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Figure 1: System Model. 
 
The straight arrows model the external inputs (Xi) and 

outputs (Zi). The gray box represents the ‘wait’ statement and 
the dashed line the memories or state variables (Ii). The dotted 
lines represent the execution paths (functionality) of the 
process. The model includes integer variables and the directly 
supported operators are addition, subtraction, multiplication 
and relational (Figure 2). Other operators have to be 
transformed into equivalent polynomial equation systems 
(modulus operation and so on). 
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Figure 2. Example of Basic Operator Modeling. 
 
Other operators (e.g. bit selection, bit-wise logic operator, 

etc) are transformed in a similar way.  
Word-level logic operators (e.g. “or_reduce”) and bit-level 

logic operations are transformed into integer polynomials. For 
example, the logic equation “a = b or c” is transformed into “a 
= b + c - (b*c). 

It is assumed that all the previous equations take integer 
values. 

Concerning control statements, conditional ‘if’ statements 
are totally supported.  This sentence splits the execution flow 
into two paths (True and False paths). These paths are 
modeled with an additional variable whose values are ‘0’ and 
‘1’. This variable enables the true path with the value ‘1’ and 

disables the false path and vice versa. Figure 3 shows an 
example and figure 4, the polynomial model. If ‘K=1’, the 
expression ‘K’ selects the true path and the expression ‘1-K’ 
disables the false path. In the other case, when K=0, the ‘K’ 
expression disables the true path and the ‘1-K’ expression 
enables the false path.  

In order to model the expression of the ‘if’ conditional 
statement, an aspect has to be considered. The value space that 
goes through the false path is complementary to the true 
space. In figure 3, the true expression is ‘(5y – x) > 0’ and the 
false expression is ‘(5y – x) ≤ 0’. The last expression is 
transformed into ‘(x – 5y) ≥ 0’ → ‘(x – 5y + 1) > 0’. And 
finally they are weighted with the ‘K’ and ‘1 – K’ expressions 
and summed (expression ‘ret’ of figure 4). 
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Figure 3. Polynomial description of a simple example 
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Figure 4. Model of the conditional statement. 
 
 
 Finally, the loop operators are handled with restrictions. 

The ‘for’ loops are totally unrolled when the number of 
iterations can be statically determined. The ‘while’ loops 
cannot normally be totally unrolled because it is not possible 
to statically determine the number of iterations. In this case, 
the verification algorithm will unroll a new iteration in every 
step. This means that the algorithm will unroll one iteration in 
the first step, two in the second and it will repeat the process 
up to a user-defined maximum number of iterations. If several 
‘while’ loops are nested, the number of unrolled statements 
will grow exponentially.  

With the previously commented transformation, the process 
body (dotted line in Figure 1) will be modeled with 
polynomials whose external input values will change in every 
process execution. The assertion to be checked and the 
conditional statements will be modeled with polynomial 
inequalities. 
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Figure 8: Steps of the algorithm to find the integer solution in 

the ‘space3’ example. 
 

III. SYSTEM MODELING EXAMPLE 
In this section, the generation of the polynomial model of a 

simple example (space3) is presented. This set of polynomial 

equations can be solved by a commercial global non-linear 
solver.  

The process body has three external inputs, x,y and z. They 
are integers with range 0 to 255. Figure 5 presents the 
behavioral description of the ‘space3’ on the top. On the 
bottom, it shows the equivalent polynomial model of the 
system. 

IV. VERIFICATION METHODOLOGY 
The goal of the proposed verification technique [10] is to 

find a point that fulfills the set of integer inequalities that 
model the hardware system and violates an assertion. Three 
steps have been defined (Figure 6): 

 
                                                      //  BEHAVIORAL  MODEL 

 
void space3 (uint8 x, uint8 y, uint8 z) 
{ 
      int temp, dat, ret; 
 

      dat = (x – 110)2 – (y – 28)2; 
      temp = dat – (z – 170)2; 
      if (10000 > temp) 
            if (6*y – 2*x – 4*z > 0) 
                  ret = x + y + z;       
      else 
            ret = 0;       
      ….  
      Assertion(ret ≤ 340); // Assertion to check 

     } 
 
                                                       //  POLYNOMIAL MODEL 
 

dat = (x – 110)2 + (y – 28)2; 
temp = dat + (z – 170)2; 
10000 – temp > 0; 
6*y – 2*x – 4*z > 0; 
ret = x + y + z; 
ret > 340; 
 

 
Figure 5: Example ‘space3’. 

 
1.- Polynomial model generation 
The behavioral description is transformed into an inequality 

system that can be handled mathematically. 
2.- Solve the inequalities system 
A non-linear solver is used to find a solution in the real 

domain. If there is a real solution, an algorithm that finds an 
integer solution has to be applied (step 3). If there is no real 
solution and the input description has “while” statements, a 
new iteration of a ‘while’ loop will be added to the 
polynomial system description before executing step 2 again.  

3.- Derive an integer solution from the real solution 
The goal is to find an integer solution taking into account 

the information that the real-domain solution provides. The 
technique defines two steps: variable rounding and branch-
and-bound exploration of the solution space.  

The first step is to round the real variables to the closest 
integer value. If there are 2 possible values (for example, 
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11.50 could be rounded to 11 or 12), a value will be randomly 
selected. Figure 8 presents the decisions that the integer-
solution search algorithm takes with the ‘space3’ example. 
The inserted assertion verifies that the ‘ret’ variable is never 
greater than 340. In Figure 8, the ranges of the inputs are 
included in ellipses. The rectangles contain the solutions that 
the solver provides in the real domain, the hexagons, the 
solution of the rounded input points and the rhombuses, the 
variable that the “selection algorithm” reports. 
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Figure 6: Verification Methodology. 
 
The non-linear solver provides a first solution that is 

rounded by the searcher algorithm to an infeasible solution 
(the assertion is not violated or the inequalities are not 
fulfilled). 

In this case, the second step (branch-and-bound based 
exploration) is applied. Firstly the selection algorithm 
(rhombus) is applied to decide the variable that splits the input 
space. Several selection algorithms are explained in section 
V.2. In Figure 8, the selected variable is x. Secondly, the input 
space of the selected variable is split into two parts: values 
greater than the integer part (x>95) of the solution and values 
less than or equal to the integer part (x<=95). This generates 
two new sets of polynomial inequalities. These sets are solved 
with the non-linear solver, thus two new sets of solutions and 
maximum values of the assertion (A.V.) can be generated. If a 
new set has no solution, its branch will be removed. The 
algorithm will select the set that produces a higher assertion 
value and it will repeat the searching process. This process 
will be finished in a branch if one of these conditions is 
verified: 

1.- The solver cannot find a solution, thus the problem is 
infeasible. 

2.- The solver provides a solution, but the assertion is 
always verified. 

In these cases, the current branch will be removed and the 
last unselected branch will be selected. This process is 
repeated until a counterexample is found or all the branches 
are removed (the assertion is always fulfilled). 

 

V. OPTIMIZATIONS OF THE VERIFICATION TECHNIQUE 
Three optimizations of the verification methodology have 

been studied. One is applied in the generation of the 
polynomial model (step 1) and the others, in step 3 (deriving 
an integer solution). 

 

A. Preprocessing of the polynomial model 
The first optimization consists in transforming the 

polynomial model into a new extended set of simpler 
expressions. This helps the solver to find the optimized point. 
The transformation splits each complex inequality into two 
simpler inequalities: one with positive monomials and 
another, with negative monomials (see Figure 7).  

 
P = x2 + 3*y*z2 – t2*z – 292*t3 

P+ = x2 + 3*y*z2 
P– = – t2*z – 292*t3 

P = P+ + P– 

 

Figure 7: Transformation of polynomials. 
 
These polynomials are always monotonic increasing (P+) 

and decreasing (P–) in the positive area (all variables are 
greater than or equal to zero). In the other areas, these 
properties are not fulfilled. In this special area, the advantage 
is that the derivative is always increasing or decreasing. This 
preprocess adds new variables and constraints to the model: 
one variable and one constraint for each constraint that is 
transformed. 

This increasing of the constraints and variables achieves 
worse results if the number of new variables is considerable 
compared to the total number of variables and the original 
expressions are simple (linear polynomials) and therefore, the 
complexity differences are similar between both models. The 
results are very notable in models with positive variables and 
complex expressions. Therefore, this optimization is applied 
to complex models and, especially, to polynomials with 
positive variables or negative variables. This decision is 
justified by the results of section VI.  

B. Selection algorithms 
The second and the third optimization are applied in the 

“Derive an integer solution” step (step 3). Starting from the 
continuous solution that the solver provides, the algorithms 
choose the dimension (variable) to split the input space and 
remove the real solution of the space of searching. Depending 
on the selected variable, the branch-and-bound exploration 
can be more efficient and it could need less computation 
resources. Two algorithms have been studied. 
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C. Gradient-based selection 
The algorithm uses the partial derivative of the objective 

function to choose the next variable to split. The objective 
function is the polynomial expression of the assertion. The 
partial derivatives are calculated in the real solution point. The 
partial derivative enables the definition of a set of linear 
equations that approximate the behavior of the objective 
function in the area close to the real solution. This set of linear 
functions allows estimating the objective function when a 
variable is rounded to an integer value. The variable that 
produces the maximum variation is chosen. This decision 
produces the maximum variation of the objective function. 

 

D. Selection based on maximum error 
This algorithm depends only on the real solution that is 

provided by the solver. This algorithm is the simplest because 
it does not use the objective function. The variable, with the 
fractional part closest to .5, is chosen. For example, the point 
(158.43, 78.75, 64.21) have the (0.07, 0.25, 0.29) differences 
with the middle point (158.5, 78.5, 64.5). Therefore, the first 
value is closest to middle value and then, the first dimension is 
the dimension to split the input space. 

 

VI. EXPERIMENTAL RESULTS 
In order to validate the optimizations of the verification 

technique, three examples of behavioral level descriptions 
have been selected. The first is a data-dominated example [8]. 
The number of possible input values is 2564 and the number 
of points that violate the assertion is only two. The example 
has 6 constraints and the maximum order of the polynomials 
is 4. The second example is a Viterbi decoder algorithm [9]. 
This is a soft decoder with a rate of ½, a constraint length of 3 
and a survivor window length of 16. The inserted assertion 
checks if there is overflow in the maximum value of the path 
metric accumulator. Finally, the third example is the ‘Pre-
Process’ module of the GSM standard (ETSI EN 301.245, 
December 1997). This module is a second order high pass IIR 
digital filter with cut off frequency at 80 Hz and 4 taps. The 
assertion verifies that the accumulated values are not 
saturated. 

The CPU times in the Tables correspond to seconds on a 
Pentium IV with 2 GB of RAM at 2.8 GHz under Windows 
XP.  

The first optimization is evaluated for the three examples 
(Table 1) and compared with different tools. The first row is 
the time, in seconds, that a SAT tool (Berkmin [12]) needs to 
verify the system. The second row (Integer solver) shows the 
time that an integer solver (LINGO) needs to provide a 
solution. And the last two rows show the time that the 
proposed technique needs to solve the problem (without the 
preprocess optimization and with the optimization). Some 
cases have no time (OFL – Out oF Limit) because the program 
was aborted or it did not have enough resources or the time 
was greater than 24 hours. 

The first example (Viterbi) has linear expressions and 
variables with range [0, 255]. The optimization reduces the 
execution time by 8 seconds, 5% of 158 seconds. The second 
example (IIR Filter) has linear expressions and variables with 
range [-32768, 32767]. The time is worse in the model with 
optimization. This example without optimization is composed 
of 22 iterations. The first iteration is a simple model with 3 
variables and the last iteration is a complex model with 170 
variables. The partial results are better in the optimized model 
when the description has few variables. But this difference is 
reversed when the description is more complex. The total time 
of the optimized model is a little worse. The third example has 
non-linear expressions and variables with positive ranges [0, 
255]. In this case, the reduced time is near to 30%. The solver 
needs 65% of the total number of iterations that it requires to 
solve for the original description.  

This optimization provides better results when the 
description has complex expressions (non-linear) and the 
values of the variables are either positive or negative. 

 

 Viterbi IIR 
Filter Space4 

SAT 2486 OFL 36 
ILP OFL OFL 4 

without 
opt. 

158 448 3 Our 
approach 

with opt. 150 504 2.1 
 

Table 1: Experimental results of the first optimization. 
 
The others optimizations are evaluated with the ‘space4’ 

example. In order to carry out a better comparison between 
both selected algorithms, several versions of the example with 
different objective function have been proposed. ‘Space4-0’ is 
the original example and the other rows of the Table 1 are 
different versions (from ‘space4-1’ to ‘space4-5’). All 
versions maintain the same properties as the original example. 
Table 2 shows the number of times that the proposed 
algorithms are applied to find the integer point (#Exe) and the 
total execution time in seconds (Time). The ‘difference’ 
column is the difference between ‘Gradient-based’ algorithm 
and ‘Maximum error’ algorithm.  

 
Gradient- 

based 
Maximum 

error Difference  

Time #Exe Time #Exe Time #Exe 
Space4-0 10 6 9 3 1 3 
Space4-1 14 12 8 5 6 7 
Space4-2 15 17 17 21 -2 -4 
Space4-3 7 2 5 1 2 1 
Space4-4 15 22 10 5 5 17 
Space4-5 14 9 14 11 0 -2 

Total 75 68 63 46 12 22 
Average 12.5 11.3 10.5 7.7 2 3.6 

 
Table 2: Transformation of polynomials. 
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The temporal results have more dispersion in the second 
selection algorithm but the execution time is 33% better on 
average than the gradient-based algorithm. 

 

VII. CONCLUSIONS 
This paper presents several optimizations of the verification 

methodology based on a non-linear solver. These 
optimizations improve the capabilities and performance of the 
non-linear solver. One of the main optimizations is 
transforming the expressions of the polynomial model into 
simpler expressions. This improvement is greater with 
complex expressions and with variables that have only one 
sign (either positive or negative). The improvement in 
‘space4’ is nearly 30%. The other optimizations affect the 
number of times that the verification algorithm is executed 
and, therefore, the execution time. The improvement of the 
execution time of the second algorithm is on average 33%. 
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