A general approach to the
interoperability of HetSC
and SystemC-AMS

F. Herrera*, E. Villar*, C. Grimm!,
M. Damm' and J. Haase
*University of Cantabria, Spain
fTechnical University of Vienna, Austria

Abstract

This paper studies and proposes a joint use of
SystemC-AMS and HetSC (Heterogeneous SystemC)
heterogeneous specification methodologies. This en-
ables an efficient support of a wide range of Models
of Computation (MoCs). In this way, SystemC can
be used for the complete specification of embedded
systems, which are increasingly heterogeneous, since
they include the software control part, digital hard-
ware accelerators, the analog front-end, etc. This pa-
per identifies and solves the syntactical and semanti-
cal issues involved in the cooperation of the SystemC-
AMS and HetSC specification methodologies. This in-
cludes considering the availability and suitability of the
MoC interface facilities provided by both methodolo-
gies, especially those of SystemC-AMS, which will be
proposed for future standardization. Some practical
aspects, such as the compatibility and installation of
their respective libraries and the definition of the set
of MoCs covered are also dealt with.

1 Introduction

L Support for heterogeneity has become an important
feature for specification methodologies that aim to cope
with the current complexity of embedded systems. In
this context, heterogeneity is the ability of the speci-
fication methodology to enable the building of models
with parts specified under different MoCs[LSV98|.
Each design domain adopts a specification method-
ology which usually corresponds to a specific model
of computation (MoC). One of the most characteristic
points associated with the MoC is the handling of time.
For instance, analog models (Continuous Time (CT)
models[Jan03]) handle strict-time information, that is,
specification events have an associated time tag repre-
senting physical time and fixing strict order relation-
ships among them. In contrast, concurrent software
models often neglect such detail in the time domain

1Work supported by the FP6-2005-IST-5 european project.

and consider only partial order relationships among the
events associated to the code.

The development of a system-level heterogeneous
specification methodology is, to a great extent, a unifi-
cation work. Some works developed interfaces between
different languages, i.e., to connect hardware descrip-
tion languages (HDLs) with high-level programming
languages [Gup02]. Later on, the focus was on the spec-
ification framework as the common point. Relevant
examples are Metropolis [DDM*07] and Ptolemy II
[BLL105]. These frameworks enable specification un-
der different MoCs, approaching the separation of com-
putation and communication in different ways. Both
provide support for graphical specification, while Java
adopts the role of underlying implementation language.
Up to now, the focus of this unifying work has tended
to be the language itself. The lack of a unified system
specification language has been identified as one of the
main obstacles bedeviling SoC designers [Gep00]. A
common specification language is a major aid in gen-
erating a design specification methodology which aims
to combine and achieve coherence among traditionally
different and separated design approaches.

SystemC has started to play a role as unifying
system-level language for embedded system design. Be-
coming an IEEE standard is a symptom of its accep-
tance and of a stated syntax and unambiguous se-
mantic for the language constructs which are used by
SystemC-based methodologies. In this context, several
proposals have appeared for building a heterogeneous
specification methodology over SystemC.

This paper shows how the HetSC and SystemC-AMS
heterogeneous specification methodologies enable the
use of SystemC to build models which comprise a wide
spectrum of MoCs. This involves studying and under-
standing how the existing facilities for MoC connection
in the two methodologies can be used and combined to
provide improved connections. Firstly, in section 2,
the work done in this area regarding SystemC is re-
viewed, mainly focusing on the HetSC and SystemC-
AMS specification methodologies. In section 3, the
general issues of their interoperability are explained.
First, some practical issues concerning the installation
and the scope of the libraries are discussed. Then, how
the SystemC-AMS and HetSC constructs are mixed in
the same specification is explained. Section 4 provides
an illustrative example of the previous concepts. Sec-
tion 5 ends with the main conclusions of this work.

2 Related Work

Although the SystemC core language supports hard-
ware specification (RTL and Behavioral) and a generic
Discrete Event (DE) modelling, there is a set of MoCs
which are not sufficiently supported by the core lan-
guage. Such support must include new specification
facilities, MoC rule checkers, report tools, etc. Several
works have attempted to cover such deficiencies. In the
following paragraphs, these works are overviewed.

SystemC-AMS [VGEO04] is a specification methodol-
ogy developped by the OSCI SystemC-AMS working
group which provides support for analog and mixed-
signal specification. This involves supporting the Syn-
chronous Dataflow (SDF), discrete-time (DT) and con-
tinuous time (CT) MoCs. Among the CT MoCs, it is
possible to specify linear behavioral models by means
of transfer functions (TF). Currently, two views are
supported for TFs: the numerator-denominator (ND)
view and the zero-pole (ZP) view. In addition, the
specification of linear electrical networks (LEN), which
enable a circuit level description is also supported.

SystemC-AMS is extensible by other models of com-
putation through a synchronization layer. Solvers
for the MoCs supported are layered over the syn-
chronization layer. The design of the synchroniza-
tion layer of SystemC-AMS and the MoCs provided
are oriented to a system-level modelling where simu-
lation speed is a more important factor than a very
fine simulation accuracy. The synchronization layer
supports directed communication and only a simple
synchronization; on user specified events or in fixed
time steps. In this way, the simulation of linear
networks with SystemC-AMS can be orders of mag-
nitudes faster than the more general numerical in-
tegration for non-linear networks [HOST07]. From
the specification point of view, SystemC-AMS of-
fers a new set of facilities, such as new kinds of
modules (SCA_SDF_MODULE), ports(sca_sdf_in,
sca_sdf _out, etc), channels (sca_sdf _signal), and other
MoC specific facilities, such as the sca_elec_node,
sca_elec_port, etc. Linear behavioral models are em-
bedded in SDF modules, while LENs are enclosed in
SystemC modules. SystemC-AMS provides converter
ports and facilites to enable different MoCs (i.e. DE
with SDF, SDF with LEN, etc) to communicate.

HetSC [HV06] is a methodology for enabling hetero-
geneous specifications of complex embedded systems
in SystemC. MoCs supported include untimed MoCs,
such as Kahn Process Networks (KPN), its bounded
fifo version (PN), Communicating Sequential Processes
(CSP) and Synchronous Dataflow (SDF). Synchronous
MoCs, such as Synchronous Reactive (SR) and Clocked
Synchronous (CS) and the timed MoCs already sup-
ported in SystemC are also included. HetSC aims at a
complete system-level HW/SW codesign flow. Indeed,
the methodology has been checked in terms of system-
level profiling and software generation [PHFT04].

The HetSC methodology defines a set of specifica-
tion rules and coding guidelines for each specific MoC,
which makes the designer task more systematic. The
support of some specific MoCs requires new specifica-
tion facilities providing the specific semantic content
and abstraction level required by the corresponding
MoCs. The HetSC library, associated with the HetSC
methodology, provides this set of facilities to cover the
deficiencies of the SystemC core language for hetero-
geneous specification. In addition, some facilities of
the HetSC library help to detect and locate MoC rule

violations and assist the debugging of concurrent spec-
ifications. One of the main contributions of HetSC is
its efficient support of abstract MoCs (untimed and
synchronous). This is because they are directly sup-
ported over the underlying discrete event (DE) strict-
time simulation kernel of SystemC. New abstract MoCs
do not require additional solvers since the new MoC se-
mantic is embedded in the implementation of the new
specification facilities (usually channels) related to the
abstract MoC. When the new MoC can be abstracted
from the DE strict-time MoC, then, it is possible to
find a mapping of internal events of the new specifi-
cation facility, i.e, a channel, over the strict-time axis
of the DE base MoC. This makes it feasible to write
the implementation of such a channel by using Sys-
temC primitives, such as SystemC events, which con-
trol when things happen within the channel and, there-
fore, in the processes related by the channel.

SystemC-H [PS04] is a methodology that proposes a
general extension of the SystemC kernel for the sup-
port of different MoCs. The extension would include a
solver for each MoC. The current scope of the SystemC-
H library covers the SDF and CSP untimed MoCs.
For instance, SystemC-H provides a solver for static
scheduling of SDF graphs which enables schedulability
analysis and provides a 75% speed-up respect to DE
[PS04]. However, this extension is not always worth-
while. Indeed, the speed-up for some abstract MoCs
can be negligible [PMS04]. For instance, the speed-up
decreases to 13% for a mixed DE-SDF example [PS04].
In addition, similar speed-ups were reported for the
dynamic approach to SDF for large-grain SDF specifi-
cations [HV06].

SysteMoC [FHTO06] focuses on providing a method-
ology with the ability to extract and analyze the MoC
employed in the SystemC design. This is understood
to be a prerequisite for the rest of the design activities.
In order to achieve this, the SysteMoC library provides
support for a basic MoC called Funstate. Specifications
written under this MoC express their communication
behavior under the finite state machine (FSM) MoC.
This enables the automatic extraction and analysis of
the MoC employed, only by analyzing communication
FSMs together with the topology of the specification.

3 HetSC/SystemC-AMS Inter-
operability

3.1 Installation and scope

Figure 1 describes the installation requirements of the
SystemC user. Apart from the SystemC core library,
the SystemC-AMS and HetSC libraries have to be in-
stalled on top of the SystemC core library. There is
flexibility with respect to the development platform
(i.e, Linux, Unix and Windows-Cygwin are supported).

There is no compatibility problem in the installation
of HetSC and SystemC-AMS libraries. In this work,
the HetSC library is extended with some specific fa-

#include <systemc—ams>
#include “hetsc.h"

SystemC
core lib.
2.1

Figure 1: Libraries installed.

analog untimed synchronous
LEN ND| Zp Static Dynamic PN SR
Behavioral| sDF SDE | KPN | CS
LN solver CSP RTL
P Beh.
Synchronization Layer

SystemC DE strict—time Simulation Kernel

Figure 2: MoCs with SystemC-AMS-HetSC.

cilities for enabling an easier connection of HetSC and
SystemC-AMS parts. These HetSC facilities use some
SystemC-AMS facilities through forward declarations.
This prevents obliging an installation order between
HetSC and SystemC-AMS libraries, making the instal-
lation procedure easier. Once such an installation has
been done, the development system is ready for compil-
ing and executing SystemC specifications written un-
der a wide range of MoCs. The user only has to include
the SystemC-AMS and HetSC libraries in the source
code of the heterogeneous specification.

Figure 2 shows the supported MoCs. The coopera-
tion of SystemC-AMS and HetSC provides a comple-
mentary MoC support. While SystemC-AMS provides
support for analog MoCs and static synchronous data
flow, untimed and synchronous MoCs are supported by
HetSC and SystemC core facilities.

This is also an efficient configuration for the support
of a wide spectrum of MoCs. The reason is that specific
solvers are provided only for a set of MoCs where the
simulation speed up is significant. This set corresponds
to analog MoCs where the simulation speed ups can be
of orders of magnitude. Bearing in mind the limited
speed-ups reported in [PS04, PMS04, HV06], untimed
and synchronous MoCs can be satisfactorily supported
directly over the SystemC kernel. The exception would
be fine grain SDF specifications, where the speed up of
a static SDF compared to a dynamic SDF could be
significant. Specifications without CT parts but with
synchronous hardware (RTL or behavioral) could also
justify a cycle-accurate simulator. However, the study
of these exceptions is not in the scope of this work.

3.2 Syntactical and Semantical issues

There are some basic issues to consider in a gen-
eral discussion of the connection between HetSC and
SystemC-AMS. From the specification structure point
of view, in the specification, two parts will be distin-
guished. One corresponds to the AMS part, while the

other corresponds to the HetSC part. From the syntac-
tical point of view the SystemC part of the specification
will be identified by SCA_SDF_MODULEs and/or
SCA hierarchical modules. The AMS part presents a
hierarchical heterogeneity where the underlying MoC
is the static synchronous dataflow (SDF) MoC. The
other part is the HetSC part, characterized, in gen-
eral, by an amorphous heterogeneity. This means that
the HetSC specification permits mixing MoC facilities
in a flat hierarchy. Nevertheless, the HetSC specifier
will often make use of module hierarchy for separat-
ing parts of the system under different MoCs. Thus,
in many cases, module partition will correspond with
MoC boundaries.

From the semantical point of view, there is a basic
consideration. While HetSC directly relies on the DE
strict-time simulation kernel, SystemC-AMS relies on
a syncronization layer, which provides support for the
solvers. In SystemC-AMS, CT descriptions are always
embedded in dataflow clusters [VGEO04]. That is, the
most important solver is the SDF one which, from the
point of view of time semantics, is the basis for the ana-
log MoCs. The time axis in SystemC-AMS is actually
sliced by each SDF cluster in strict-time delays called
cluster periods, which depend on the cluster period (T)
and the rates of the cluster SDF graph. Thus, with re-
spect to the premises of [LM87], the SDF approach of
SystemC-AMS is not an untimed SDF'. Internally, mod-
ules of the cluster can be viewed as a strict-time timed
approach to the SDF MoC (denoted as T-SDF here),
which enables a static execution of the AMS processes
at each cluster period. More important for the purpose
of this work, from an external point of view, the cluster
can be conceived as a timed-clocked synchronous (CS)
block which triggers at each cluster period. Thus, the
cluster period must be taken into account to synchro-
nize the DE part with the SystemC-AMS part.

Since every MoC supported by HetSC is abstracted
over the DE strict-time simulation kernel and every
SystemC-AMS MoC is clustered in the T-SDF MoC,
the problem is reduced to providing a DE/AMS con-
nection, which is basically a DE/T-SDF connection.
In SystemC-AMS, this connection is focused on the
SystemC signal (sc_signal). A set of SystemC-AMS
specification facilities (sca_sc2sdf_in, sca_sc2sdf _out,
sca_sc2v, sca_sc2r, etc) are used for such direct con-
nection through the sampling and update of the Sys-
temC signal. Therefore, an immediate conclusion is
that these elements can be employed to combine HetSC
and SystemC-AMS. This idea can be conveniently ex-
ploited and coherently complemented with one of the
basic concepts employed in HetSC for the connection
of MoCs: the border process. In Figure 3, a HetSC re-
active chain [HV06] is composed of a generator process
(GP) which triggers a reactive process (RP). This RP
is also a border process (BP), since it writes to a Sys-
temC signal channel, provoking the update of its value
in the next delta cycle. From the SR MoC point of
view, this connection is compatible with the SR rules,

Q\C uc SR

SDA_SDF

sc_signal _MODULE

BP
Q»@»o
RP sca_scsdf_in

Figure 3: BP connection.

uc_inf_fifo_sca_sdf<T> sea_sesdf in

SDA_SDF (@
A el G

cons_T

sca_sdf_out

<1

hj

Figure 4: Structure of uc_inf_fifo_sca_sdf channel.

specifically with perfect synchrony, since the write ac-
cess to the SystemC signal is non-blocking.

However, the connection of SystemC-AMS and
HetSC can be improved. The set of MoCs abstracted
from the DE MoC and supported by HetSC is rich
enough to consider specific connections. For instance,
the connection of a KPN MoC and a LEN MoC in-
volves fifo channels on one side and electrical nodes
on the other side. It would be convenient to count
on some connection facility which enables such direct
connection, without the intermediation of the SystemC
signal (sc_signal). The HetSC border channel (BC)
can be employed to achieve such direct connection be-
tween HetSC and SystemC-AMS. Figure 4 illustrates
this. It shows a border channel (uc_inf_fifo_sca_sdf),
which enables a direct connection between a KPN
MoC and a T-SDF MoC. It is built as a hierarchical
channel which on the one hand exports the write in-
terface of a uc_inf_fifo channel, while on the other
hand offers a T-SDF port (sca_sdf_out) port. Inter-
nally, it uses a border process which consumes fifo
tokens, whose values are used to update the internal
SystemC signal. The signal is connected to a con-
verter port (sca_scsdf_in) of an inner SystemC-AMS
module. In addition, BCs provide an scalable way to
construct these direct connections since it does not re-
quire the SystemC-AMS kernel to be changed. Fur-
thermore, BCs can solve another issue of SystemC-
AMS DE/AMS interface primitives. They are based
on sampling (read) and updating (write) signals at-
tending the cluster period. However, a KPN part, for
instance, only produces or consumes data. Then, some
kind of adaptation has to be introduced to convert com-
sumption in sampling (and vice versa) and production
in writing (and vice versa). This is not actually de-
fined by the SystemC-AMS connection facilities. Such
adaption can be then explicitly written, i.e. in a border
process. The BC enable the packaging of such adap-
tation in a specification primitive. For instance, in the
uc_inf_fifo_sca_sdf channel, it is defined when to con-
sume fifo tokens by means of a sampling period, which,
in general, can be different from the cluster period. The

EQ. STATE DISPLAY
@® 2N

=i GEN VOL
= Q MODE
K

Mz 32 61 125 250 500 1K 21

@® rour

[T
11T

-10dB

+10dB CANCEL SET
CH VOL CH SELECT
AEEEE .
HE%E) O
-10dB
CH . EQ. EDITION DISPLAY

Figure 5: Soundboard System.

BC can also raise an error if the internal fifo gets empty
when a new sampling is given.

4 Example

In order to demonstrate the previous general concepts,
an example has been developped. It consists of a
soundboard, which is shown in Figure 5. The system
has an audio input and an audio output. The audio
input undergoes three stage filtering. The first filter
is a noise filter to remove any signal component over
22KHz. The second one is a 10-channel equalizer. The
last one is an integrator, which, at the same time, con-
trols the general volume and filters the DC component
of the audio output. The system has other inputs, as
well as the audio input. A dial enables selection of the
equalizer channel, while another dial tunes the gain of
the selected channel in dBs (in a [-10dB,10dB] range).
A state display shows the current state of the equal-
ization, while an edition display shows the currently
selected channel and the currently edited equalization
profile. This profile is not applied till the set button
is pressed. Then, the state display changes to reflect
this equalization profile. If the cancel button is pressed
instead, then the edition display and the edition equal-
ization profile return to the initial state (0 dB for ev-
ery channels). Another dial controls the general gain
of the system (also in a [-10dB,10dB]| range). It does
not depend on the set button. That is, its change im-
mediately updates the system gain.

Figure 6 depicts how this has been solved us-
ing HetSC and SystemC-AMS together. The sys-
tem is enclosed in a SystemC module (soundboard).
This top module contains another SystemC module
(panel_control), which contains the HetSC part of the
system and uses the HetSC library specification facili-
ties. The soundboard module also contains three mod-
ules which use SystemC-AMS facilities. In this case,
the testbench model (testbench module) is composed
of four modules which only use HetSC facilities.

In Figure 6, the correspondence with the MoCs em-
ployed is depicted with dashed lines. In the testbench
module, two processes (left_hand and right_hand)
model the handling of dials and buttons of the sound-

board. The two processes are synchronized through a
rendez-vous channel, to ensure the left hand edits the
equalizer profile before the right hand pushes the set
button and raises the general volume. Because of this,
this part is a CSP network. In addition, each of the
processes is an autonomous process generating a SR
reactive chain. Dial turn and button press are mod-
eled as writes to uc_SR channels. The reactive chain
which controls the general volume is pure, in that it
is composed only of generator and reactive SR pro-
cesses. The reactive process converts the dial events
(turning left or right), which mean plus 1 dB or mi-
nus 1 dB, considering the bounds of the [-10dB,10dB|
range, in a control SystemC signal which affects the
value of a resistor composing the integrator module.
A similar thing happens with the channel equalization
control. However, here there is not a pure reactive
chain, since the two reactive processes are border pro-
cesses, as they also write to infinite fifo HetSC channels
(ucinf_fifo), proper of the KPN MoC. For instance,
one is used to pass the new equalization profile to the
state display when the set button is pressed.

In the analog part, the noise filter is modeled through
a SystemC-AMS SDF module (noise_filter). This
module has an input port, to read the s_in external
signal which provides the audio samples. It is designed
as a second order Butterworth low pass filter with a cut
frequency of 22KHz, which is modeled under the LN-
TF MoC of SystemC-AMS, using the ND view. The
other two blocks are modelled at a circuit level, under
the LEN MoC. The equalizer_array module encloses
an array of 10 equalizer cells. Each of them is an active
band pass filter centered at the channel frequency. This
filter is described as a circuit with 3 resistors, 2 capac-
itors and a model of operational amplifier (OA) which
considers the gain, the input and output resistance.
Each equalizer cell is instantiated taking the capacitor
values as the parameter for centering each filter at the
channel frequency (32Hz for channel 0, 64Hz for chan-
nel 1 and so on till 16KHz for channel 9). The output
of each equalizer cell is connected to a resistor instance
of type sca_sc2r, controlled by one of the signals of the
Rch_ctrl signal array. These resistors are connected to
the same eletrical output node, where the contribution
of each equalizer cell is added. This node is used as
input to the integrator module. This module is also
described as a circuit which also instantiates the previ-
ously mentioned OA model, a capacitor and a resistor
controlled by the Rgen_ctrl signal, to control the gain
of the integrator and, thus, of the whole system.

In both, the HetSC and SystemC-AMS parts, ele-
ments are employed to connect MoCs. For instance,
BPs connect KPN and SR MoCs in the HetSC part,
and a sca_sdf 2v instance connects the noise filter to the
equalizer array. In Figure 5, the connections between
the HetSC and the SystemC-AMS part have been high-
lighted with thicker arrows. Specifically, the audio in-
put samples are transferred to the soundboard mod-
ule through an instance of the wuc_inf_fifo_sca_sdf

testbench
soundboard user O(¢>O

SR
I I I
edition soundboard l l l l l

displa;
_display {}

ate_display ~ @ , O

KPN

Rch_ctrl ¢ Rgen_ctrl
(T-SDF)
sin src s_in noise_filter —| equalizer_array || integrator
(LN-TF)
i (LEN)
HetSC _SystemC-AMS (ANALOG)

Figure 6: SystemC-AMS-HetSC specification.

Tnitial and Edited frequency response.

-120

1 10 100 1000 10000 100000 16406

Figure 7: Initial and edited frequency spectrum.

channel introduced in the previous section. This bor-
der channel enables a direct connection between the
untimed part, which generates the samples, to the
SystemC-AMS input converter port of the noise filter.
The connection of the SR reactive chains to the LEN
part of the model is placed between the lower part of
the control_panel module and the equalizer_array and
integrator analog modules. For instance, the reactive
process triggered by the turn events of the general vol-
ume dial is indeed a border process which writes the
Rgen_ctrl SystemC signal. A similar thing happens
with the non pure reactive chain, which drives an array
of 10 signals (each one for its corresponding equalizer
channel). Each of these signals controls the value of a
SystemC-AMS sca_sc2r primitive.

A time domain simulation and two frequency anal-
yses have been peformed. The time domain simula-
tion is dumped to data and waveform files. The first
frequency analysis is done in the middle of the time
domain simulation. At this time, the soundboard re-
sponse corresponds to that of the initial state (0dB gain
for every channel and for the general volume). The sec-
ond ac analysis is done at the end of the time domain
simulation. Then, a manual configuration has already
been performed and the set button pressed. The result
are two data files, whose values are represented in Fig-

ure 7. Figure 7 shows the change on the equalization
profile. Other outputs of the system are two log files
which reflect the activity in the displays.

This specification has been written in just over 2500
SystemC lines including testbench modules. It took
around 30 man-hours (ignoring learning time). The
simulation time was less than 53 seconds in an Intel
P4 2.8GHz, Linux 2.6.3 development platform. This
illustrates how fast the system-level specification and
analysis of such heterogeneous system can be done us-
ing HetSC and SystemC-AMS.

5 Conclusions

This work addresses how the HetSC and SystemC-
AMS specification methodologies can be used together.
With their cooperation, a wide range of MoCs, from
untimed to analog ones, are efficiently covered. This
is a key feature in enabling the early system-level
specification of embedded systems. The installation
and compatibility of the HetSC and SystemC-AMS li-
braries has been checked. Furthermore, the syntac-
tical and semantical issues related to the connection
have been discussed. SystemC-AMS is based on a
timed SDF MoC, where AMS clusters can be concep-
tually seen as timed-clocked synchronous blocks from
the DE part. SystemC-AMS provides facilities for
this AMS/DE connection which are based on the sam-
pling and update of the SystemC signal. Since HetSC
MoCs are abstracted from the underlying DE strict-
time MoC, the connection of any HetSC MoC with
any System-AMS MoC can be reduced to a SystemC
DE/SystemC-AMS connection. Thus, SystemC-AMS
facilities for the DE/AMS connection can be used.
Moreover, the HetSC border channel can be conve-
niently used to provide direct connections among spe-
cific untimed and synchronous (HetSC) MoCs and ana-
log (SystemC-AMS) MoCs, hiding the intermediation
of DE signals in the connection of MoCs that do not
employ such specification primitives and encapsulat-
ing the detection of error situations which consider the
cluster period, the time conditions of HetSC part, etc.
Further research on this topic will involve the use of
polymorphic signals [SGKO05], which will release any
manual engagement in the system refinement. Finally,
this work implicitly states the need for a formal envi-
ronment in order to obtain a common understanding
of the interoperation of this kind of methodologies.

References
[BLLT05] C. Brooks et al. Ptolemy II: Heterogeneous
Concurrent Modeling and Design in Java.
Tech. Report, Univ. of California Berkeley,
July 2005.

. Davare et al. next-generation design

DDM*07] A. D 1. A ion desi
framework for blatform-based design. In
DVCon 2007, February 2007.

[FHT06]

[Gep00]

[Gup02]

[HOS+07]

[HV06]

[Jan03]

[LMS7]

[LSVO8]

[PHF*04]

[PMS04]

[PS04]

[SGKO5]

[VGE04]

J. Falk, C. Haubelt, and J. Teich. Efficient
representation and simulation of model-
based designs in SystemC. In Proc. of
FDL’06, Darmstad, September 2006.

L. Geppert. Electronic Design Automa-
tion. IEEE Spectrum, 37(1), January 2000.

R. Gupta. HDL/C interface exploration.
Tech. Report, ICS Dpt., University of Cal-
ifornia, California, USA, 2002.

A. Herrholz et al. ANDRES - ANalysis and
Design of Runtime rEconfigurable hetero-
geneous Systems. In Proc. of DATE’07,
Nice, April 2007.

F. Herrera and E. Villar. A framework for
embedded system specification under dif-
ferent models of computation in SystemC.
In Proceedings of DAC’06, 2006.

A. Jantsch. Modelling Embedded Systems
and SoCs. Morgan Kaufmann, June 2003.

E. A. Lee and D. G. Messerschmitt. Static
scheduling of synchronous data flow pro-
grams for digital signal processing. IEFE
Trans. on Computers, C-36(1):24-35, 1987.

E. A. Lee and A. Sangiovanni-Vincentelli.
A Framework for comparing Models of
Computation. IEEFE Transactions on
Computer-Aided Design of Integrated Cir-
cuits and Systems, 17(12), December 1998.

H. Posadas, F. Herrera, V. Fernandez,
P. Sanchez, and E. Villar. Single source
design environment for embedded systems
based on SystemC. Transactions on Design
Automation of Electronic Embedded Sys-
tems, 9(4):293 — 312, December 2004.

H.D. Patel, D. Mathaikutty, and S.K.
Shukla. Implementing multi-moc exten-
sions for SystemC: Adding CSP and FSM
kernels for heterogeneous modelling. T. Re-
port, FERMAT, Virginia Tech., June 2004.

H.D. Patel and S.K. Shukla. SystemC Ker-
nel Fxtensions for Heterogeneous System
Modeling: A Framework for Multi-MoC
Modeling. Springer, July 2004.

R. Schroll, C. Grimm, and Waldschmidt
K. Verfeinerung von mixed-signal systemen
mit polymorphen signalen. In Analog’05.
VDE-Verlag. Berlin, Germany, 2005.

A. Vachoux, C. Grimm, and K. Ein-
wich. Towards analog and mixed-signal
SoC design with SystemC-AMS. In IEEFE
DELTA’0/, Perth, Australia, 2004.

