
Specification of Adaptive

HW/SW Systems in

SystemC

Fernando Herrera?, Eugenio Villar?,
Philipp A. Hartmann†

?University of Cantabria, Spain
†OFFIS, Germany

Abstract

This paper proposes a SystemC-based specification
methodology of adaptive embedded systems to be im-
plemented on a platform including one or more proces-
sors, thus supporting the execution of embedded soft-
ware, and digital hardware with capabilities of partial
dynamic reconfiguration (DRHW). For it, it proposes
the collaboration of two specification methodologies:
HetSC and OSSS+R. The main issues for the integra-
tion of these specification methodologies are addressed.
This includes how to install and use them together,
which is the structure of the specification, how adap-
tivity is specified for SW and DRHW implementation,
and the syntactical and semanticual issues related to
the MoC interface implicit in their connection. 1

1 Introduction

From the early versions to the last update of the Inter-
national Roadmap for Semiconductors (ITRS) [ITR07],
the need for the evolution of the design methodology
towards a new framework centered on a system-level
specification methodology has been pointed out. It
has motivated an important research effort to over-
come challenges like finding a unified system-level spec-
ification language and methodology [SV07]; improving
the software and hardware productivity gap [ITR07];
and minding features like heterogeneiity and adaptiv-
ity [ÅRH+06], which have to have some explicit deal
at the specification level.

Fortunately, some of these challenges are being over-
come. SystemC has become the IEEE1666 standard
and gained strength as unified specification language.
In addition, as well as features for system-level and
hardware specification, it provides facilites which have
enabled the development of several extensions, like the
HetSC methodology [HV07], for improving the support
of heterogeneity, and OSSS+R[SON06] to enable the
abstract specification of DRHW.

1Work co-funded by the European Commission within the
Sixth Framework Programme as part of the ANDRES project
(IST-5-033511).

Figure 1: Main issues of this paper.

However there are still open issues, such as how to
integrate in SystemC abstract HW and SW specifica-
tion methodologies supporting adaptivity; the support
of a full HW/SW implementation flow from the re-
sulting specification methodology; and the interpreta-
tion, modelling and implementation of software adap-
tivity. As reflected in Fig. 1, this paper addresses these
issues while proposing the integration of two specifi-
cation methodologies: OSSS+R and HetSC. This in-
tegration yields a specification methodology support-
ing an implementation flow able to target part of the
adaptative functionality to embedded software, while
the other part is implemented as DRHW. The paper
first reviews the relevant related work (section 2) and
then, the OSSS+R and HetSC methodologies (section
3). Then, different aspects of their integration are in-
troduced: which infrastructure need to be installed and
how to use it (section 4.1), the structure of the spec-
ification (section 4.2), the way adaptivity is specified
(section 4.3), and the syntactical and semantical issues
of the connection (section 4.4), which requires an anal-
ysis of the underlying MoC(s) considering adaptivity.
Finally, section 5 gives the main conclusions and future
lines of this work.

2 Related Work

Several frameworks for system-level heterogeneous
specification have been proposed. Ptolemy [BLL+07]
and Metropolis [DDM+07] are among of the most know
ones. Both are based on Java, although are differ-
ent in their conception. Ptolemy is a component-
based methodology supporting hierarchical heterogene-
ity since the execution semantic is distributed in a hi-
erarchy of director classes. However, Metropolis sup-
ports amorphous heterogeneity by means of a class-
based infrastructure which enables an orthogonaliza-
tion of computation and communication. Another im-
portant approach is SysML (Systems Modelling Lan-
guage) [Wei08], a UML2.x profile to provide a domain-
specific modelling language. This language must rely
on an implementation language for its simulation.

In a SystemC context, several research activities
have improved the support of heterogeneous specifica-
tion. For instance, SystemC-H [PS04] is a methodology
that proposes a general extension of the SystemC ker-
nel for the support of different MoCs. The extension
includes a solver for each MoC and requires the mod-
ification of the SystemC library, which is not always

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 61

worthy for the untimed MoCs supported. SysteMoC
[FHT06] focuses on providing a methodology with the
ability to extract and analyze the MoC employed in the
SystemC design as a prerequisite for further design ac-
tivities. In order to achieve this, the SysteMoC library
provides support for a basic MoC called Funstate. A set
of works have extended SystemC capabilities for sup-
porting analog models. They provide specific solvers
and synchronization layers to communicate with the
plain SystemCpart of the specification. Likely, the
most known work is SystemC-AMS[VGE04], developed
by the OSCI SystemC-AMS working group. Other rel-
evant works on analog domain are SystemC-A [AJK]
and SystemC-WMS [OBC06].

Some recent works have focused on the support of ab-
stract modelling of hardware in SystemC. In [SWT+04]
an OO SystemC specification of the hardware partition
is generated from an initial UML specification. The
OO SystemC specification feeds a synthesis tool called
OOAS, which generates synthesizeable SystemC code.
In GNOS03, a set of facilites, which are partly a set
and partly a superset of SystemC, enables OO specifi-
cation of hardware, constraining the usage of features
like pointers. Such specification can be also synthe-
sized by means of a tool called Fossy [Fos]. These
methodologies did not provide support for modelling
and design of DRHW.

There have been several proposals enabling mod-
elling and profiling of DR hardware architectures in
SystemC. In [PMC03], a methodology for modelling
dynamically reconfigurable blocks in SystemC is pre-
sented. These blocks can be associated to different
contexts during simulation time and, using context
swithching and active running times, an effective de-
sign space exploration (DSE), considering bus traffic
is done. This approach requires a transformation of
the source code. Perfecto framework [LH05] is able
to provide area figures as well as time performance
estimation. This framework handles the slice as the
basic area unit and each DR component in the frame-
work, called DRLC, takes a specific amount of them.
In [SRHT07], an extension of the Virtual Processing
Components (VPC) framework for supporting the sim-
ulation and modelling of reconfigurable systems is pro-
posed. A common issue of these proposals is that they
are not provided with support of a synthesis flow which
eliminates the need for manual refinement.

3 Previous Work

This work proposes the collaboration of two basic
methodologies, called HetSC and OSSS+R. These
specification methodologies have a main advantage
with respect to the methodologies presented in section
2. Each one already support an implementation flow,
for embedded software generation, and for synthesis of
DR hardware, respectively. This makes good candi-
dates for the generation of a specification methodology
able to target SW/DRHW platforms. This is a partial

result of the ANDRES project [AND]. This project
aims the development of a SystemC-based framework
for the design of Adaptive Heterogeneous Embedded
Systems (AHES) with a strong formal foundation given
by ForSyDe meta-model [Jan04].

3.1 HetSC

HetSC [HV07] is a methodology for enabling hetero-
geneous specification of complex embedded systems
in SystemC. Untimed and synchronous MoCs are su-
ported over the strict timed DE MoCs of SystemC. In
ANDRES, HetSC is used for specifying embedded soft-
ware. Providing support for specification under several
abstract MoCs (e.g. KPN, PN, CSP, SR, etc.), HetSC
enables a more intuitive and safer design of the con-
current software.

The HetSC methodology defines a set of specifica-
tion rules and coding guidelines for each specific MoC
making the design task more systematic. Then use-
ful properties for concurrent software, such as deter-
minism, deadlock protection, etc are achieved. The
support of some MoCs requires new specification facil-
ities with specific semantics and abstraction levels. The
HetSC library, associated to the HetSC methodology,
provides such a set of facilities, covering the deficiencies
of the SystemC core language for heterogeneous specifi-
cation. In addition, some facilities of the HetSC library
help to detect and locate MoC rule violations and as-
sist in debugging concurrent specifications. The HetSC
methodology has an associated software design flow
called SWGen [SWG], put into practice in [FHSV03].
SWGen is a library-based methodology which enables
the automatic generation of embedded software with-
out modifying the original HetSC code.

In [AND] several tasks were pointed out for integrat-
ing the HetSC methodology into the ANDRES design
flow. Two of them, the extension of HetSC for support-
ing adaptivity and the improvement of the connection
with the other SystemC-based ANDRES methodolo-
gies, are in the scope of this paper. In [HVG+08], the
connection of HetSC and SystemC-AMS methodolo-
gies enabled the connection at the specification level of
software and analog hardware models. Now, this work
will complete the former two objectives.

3.2 OSSS+R

OSSS+R [SON06] is a SystemC based modelling
library providing high-level language constructs
enabling application-driven modelling of (self-
)reconfigurable hardware systems. OSSS+R keeps a
well-defined synthesis semantics which enables that
OSSS+R designs can be automatically mapped to
platforms supporting dynamic partial reconfiguration.

Based on OSSS [GNOS03], in OSSS+R object-
orientation is used as an adequate abstraction mech-
anism for dynamically reconfigurable hardware. The
concept is based on the assumption that changing func-
tions of parts of a hardware system resembles the

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 62

use of polymorphism in object-oriented software de-
sign [SON06]. Considering a digital hardware sys-
tem consisting of a static and a dynamically reconfig-
urable part, it is obvious that the interface between
the two parts needs to be fixed. However, the im-
plemented functionality of the reconfigurable hardware
may change. Hence, the key idea of OSSS+R is to
model the reconfigurable area of a hardware system
as a polymorphic object with a fixed interface, the re-
con object. The fixed interface is defined by a base
class, while its possible variants belong to different
subclasses. During run-time,different variants of the
adaptive object can be configured and used. To han-
dle the management of different object configurations
and to ensure persistence OSSS+R introduces Named
Contexts. A context represents all relevant informa-
tion of an object, including its current type and state.
From the designer’s point of view, a context and a C++
pointer are used in a similar way, thus objects can be
assigned to it and methods can be arbitrarily called.
However, an automatically instantiated infrastructure
ensures that a context is enabled (i.e. configured) only
if it is accessed. Its state is automatically saved and
restored during consecutive reconfigurations. Because
a context can be accessed concurrently, incoming re-
quests are serialised using a built-in scheduler. Con-
texts hide the complexity of configuration management
and state preservation and enable the designers to use
adaptivity transparently.

In ANDRES, OSSS+R is being enabled with the sup-
port of automatic hardware synthesis for DR architec-
tures [HOS+07], by extending the capabilities of Fossy
tool. This is a distinguishing capability respect to any
of the hardware methodologies mentioned in section 2.

4 Interoperability

4.1 Installation and Usage

Since, both HetSC and OSSS+R are library-based
specification methodologies, they can cooperate in a
library-based framework as shown in Figure 2. Both

Figure 2: HetSC and OSSS+R libraries.

libraries include new specification facilities based in
SystemC ones. This enables a decoupled way to extend
SystemC code, which enables the building of a frame-
work integrating contributions from different parties,
like in the current case. Thus, in order to install and
use HetSC and OSSS+R features in a SystemC-based
specification, the SystemC library must be installed be-
fore the HetSCand OSSS+R libraries. In order to use

Figure 3: Specification structure.

their specification facilities, OSSS+R and HetSC main
headers must be included at least once for each compi-
lation unit. In the ANDRES framework these headers
are internally called by a single header file (ahes.h).
At specification level, any number of compilation units
(thus separated compilation) are supported.

4.2 Specification Structure

In Fig. 3, the basic module hierarchy and concurrency
structure of a specification making use of HetSC and
OSSS+R facilites has been depicted. For it, the graph-
ical representation of SystemC specification facilities
defined by HetSC [HV07] has been used.

On the left hand side of Fig. 3, the HetSC part is
basically a process network (PN) of SystemC processes
(P1, P2 and P3) of SC THREAD type, the most gen-
eral class of SystemC processes. They are connected by
means of channel instances (like ch1 and ch2), which
are strongly associated to the MoC. In this paper, the
focus is on the usage of untimed MoCs of HetSC to
specify the SW part. The SWGen methodology is able
to automatically produce SW code preserving a con-
currency structure similar to the SystemC one. For
instance, in HetSC ch2 can represent a bidirectional
blocking rendezvous channel (uc rv) and ch1, a block-
ing bounded fifo channel (uc fifo). Then, this part
connects a CSP MoC with a Bounded KPN untimed
MoC [HV07].

On the right hand side, the OSSS+R part
is a PN composed of SystemC clocked processes
(SC CTHREAD), like P4 and P5 These are triggered
by a triggerer event, which is transfered from a source
(the clock) by means of a channel ch6 of sc signal type.
These processes are connected by means of channels
ch4 and ch5, of sc signal type. These channels can be
used for data transfer. The semantic of the sc signal
lets the persistance of the read value during each clock
cycle. Aditionally, they serve for synchronization, by
informing a process whether it must go on computing
in the next cycle or not. The structure also includes the
access of several clocked processes to a reconfigurable
object.

Regarding to the module structure, in any case,
OSSS+R obligues to enclose each reconfigurable object
in a module. SystemC also forces HetSC to enclose the
concurrent structure at least within a module. Fig. 3,
proposes a structure of at least a module for each part.

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 63

This is convenient since it makes clear the specification
structure and easier a later HW/SW partition process
and the location of HW/SW interfaces. In any case,
more hierarchical levels would be possible.

4.3 Adaptivity

HetSC and OSSS+R collaboration enables the system-
level specification of adaptive HW/SW systems. This
section explains how adaptivity is specified by us-
ing HetSC and OSSS+R methodologies. They pro-
vide an interpretation in a SystemC-based framework
from a general and formal concept of Adaptivity. In
time, HetSC and OSSS+R adaptative structures have
their corresponding interpretation in the implementa-
tion plane (Fig. 4).

The formal description of Adaptivity is provided by
ForSyDe and goes beyond the objectives of this pa-
per. Nevertheless, some basic lines are given to re-
flect how hardware and software adaptivity models pro-
vided by HetSC and OSSS+R source from a basic com-
mon understanding. ForSyDe supports adaptivity by
means of the adaptive process (AP). An AP is a pro-
cess where the inner functionality directly relating pro-
cess input and output ForSyDe signals can be changed
during run-time by means of a special adaptation in-
put ForSyDe signal. Moreover, ForSyDe gives an ad-
ditional resource-aware nouance to adaptivity, in the
sense that an AP is tied to some form of actual compu-
tation resource. Several functionalities allocated to the
same AP will be computed by using such computation
resource in an exclusive manner. In this sense, an AN-
DRES model using APs is a constrained model, which
is a result of a first refinement step from the specifica-
tion model [HOS+07]. The AP leaves still some free-
dom degree for the notion of computation resource in
the different implementation domains involved, as will
be seen.

Figure 4: Adaptivity in HetSC and OSSS+R.

Fig. 4 depicts OSSS+R and HetSC interpretations
using, as Fig. 3, the HetSC graphical representa-
tion. The system-level modelling of adaptive hard-
ware is provided by OSSS+R. OSSS+R supports the
specification of an AP thanks to the recon object and
named context facilities. In effect, any clocked process

accessing different named contexts attached to a given
recon object is a process changing its funcionality dur-
ing run-time, specifically at different clock cycles. The
computation resource notion of the AP in OSSS+R is
also clear, since two clocked processes cannot execute
at the same cycle. At an implementation level, each
recon object is implemented as a piece hardware area
whose functionality can be changed during run time
without perturbing or changing the functionality of the
rest of the hardware area.

The system-level modelling of adaptative software
has required the extension of HetSC. Adaptivity has
been incorporated to HetSC in a general way following
the ForSyDe formalism. The AP is modelled just as
a SystemC process with some specific features. Since
in HetSC, channels are the only way to communicate
processes, the adaptation input is just the read of an
input channel access (cha). The values read from this
channel modify the internal functionality which relates
values read from input channels with the values writ-
ten to output channels within the adaptive SystemC
process. For instance, the HetSC implementation of
a mode-based AP, requires the adaptation input to
be implemented as read accesses to an input channel
which transfers data of a simple countable data type
(enumerated, integer, etc.). The value read is inter-
preted as the mode which will determine which code
path is executed to relate values read from input chan-
nels with values written to output channels. Addition-
ally, the extension of a basic asumption of the HetSC
general methodology has been required. Previously,
HetSC assumed that a channel only transferred values
or data tokens and no kind of references. However, in
order to support the modelling of a function-based AP,
the possibility to transfer function pointers through
an adaptation input channel has been contemplated.
Then, the SystemC process implementing the function-
based AP internally uses this pointer to internally call
a function which will directly relate values read from
the input channel with values written to the output
channels. The specific types of output and input chan-
nels, including the adaptation channel, depend on the
MoC the adaptive structure is immersed in. This af-
fects when adaptation takes place. Moreover, the detail
of time information associated to such when depends
on whether a timed, synchronous or untimed MoC is
being considered.

This general SystemC-based modelling of adaptiv-
ity in HetSC enables an open software implementa-
tion semantic. As was mentioned, the specific mean-
ing of actual computation resource is not specified by
ForSyDe. Neither it is done by the SystemC adaptive
process of HetSCḞor instance, it is not defined if the
actual computation resource of a software implemen-
tation of a SystemC AP has to be a complete Turing
machine (a processor, a DSP, etc) or a software con-
text (a set of variables, register values, etc). More-
over, in the latter case, it would not be defined if such
context would have to be a heavy or a light context

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 64

(proper of SW processes and SW threads). Currently,
the SWGen methodology targets only single-process
single-processor architectures. Thus SWGen currently
maps SystemC processes to threads of the same pro-
cess and processor. Because of this, an adaptive pro-
cess in SystemC becomes an adaptive thread and the
input, output and adaption channels are implemented
by means of inter-thread communication mechanisms.
This means that the thread context is the shared re-
source among the different functionalities attached to
the adaptive thread. However, the flexible interpreta-
tion of adaptivity in HetSC enables further extensions,
which in time support further extensions of the SWGen
methodology, to target embedded systems on platforms
based on perative systems supporting processes (like
Embedded Linux) and multiprocesor architectures.

4.4 Connection

In this section we analyze the syntactical and seman-
tical issues of the connection of HetSC and OSSS+R
structures. Fig. 3 shows a convenient way to connect
both parts when each one allocates its own module: by
means of a channel (ch3). This structure let a clear lo-
cation of HW/SW interfaces at specification level. This
will facilitate the later development of an implementa-
tion flow.

This OSSS+R-HetSC connection, as well as repre-
senting a DRHW/SW connection, also represents a
HetSC MoC - OSSS+R MoC connection. In terms of
the HetSC methodology this involves using a border
process (BP) or a border channel (BP) to solve such
connection. It was already mentioned which MoCs
does HetSC supports. Also that this paper focuses on
the usage of HetSC untimed MoCs. In this context, it
is necessary an analysis of the underlying MoC which
a OSSS+R specification abides.

To the effect of MoC analysis, it can be asumed that
modules, ports and exports have no involvements in
the simulation semantic, hierarchical information can
be been neglected. Part of the analysis of the MoC
in OSSS+R MoC has been already done in section
3. Such description is actually the description of a
clocked-synchronous (CS) MoC. Moreover, it could be
precised as a timed-CS MoC, since each clock event
transfered through the ch6 channel is placed in differ-
ent SystemC time stamps.

The introduction of adaptivity in the OSSS+R MoC
by means of the recon object and the named context
needs some additional considerations. Reconfigurable
objects add an additional synchronization mechanism
between clocked processes determined by the internal
scheduler, since they guarantee an exclusive access at
each cycle. Strict time information for reconfiguration
times confirms the timed character of the OSSS+R
MoC. There is no explicit data transfer among pro-
cesses by means of the recon object. However, it must
be taken into account that a named context is not side
effect free. If every named context were accessed only
by one process, there is neither effective data trans-

fer nor state changes involvements among clocked pro-
cesses. However, if two processes try to access the same
named context in the same cycle, there would be a po-
tential non-determinism. Since SystemC semantic does
not state which process should enter first, then the
specification would admits at least two different exe-
cution paths, potentially affecting in a different way
the context state and finally producing different out-
puts. However, in OSSS+R case, the internal scheduler
of the recon object provides an additional semantic to
the SystemC-one which makes the specification pre-
dictable. In the HetSC case, the usage of side effect
free functions facilitate the preservation of determin-
ism. Basically, it prevents a kind of indirect shared
variable communication mechanism among processes,
a basic HetSC rule.

Summarizing, apart from the involvements of adap-
tivity, it can be concluded that OSSS+R follows a
timed clocked synchronous MoC, directly relying over
the SystemC discrete event (DE) MoC. Therefore, the
connection depiced in Fig.3 is an untimed/timed-CS
connection. This kind of connection was studied in
[HVG+08]. There, two possible solutions were pro-
posed. One, based on BPs, could be applied to Fig. 3.
Then, P2 would be a BP which access an untimed MoC
channel (ch1) in one side, while on the other it access
a sc signal channel (ch3). The other solution, would
be more convenient for this case. There, ch3 would be
a BC presenting an interface proper of a channel of an
untimed MoC of the HetSC part (usually blocking ac-
cess methods) and an interface proper of a timed-CS
MoC, usually the non-blocking access semantic of the
sc signal interface methods.

5 Conclusions

In this paper, the integration of HetSC and OSSS+R
SystemC-based specification methodologies has been
proposed for the system-level specification of AHES
to be implemented in platforms based on architectures
provided with embedded processors and dynamically
reconfigurable hardware. To solve this task, how adap-
tivity is interpreted in OSSS+R and HetSC method-
ologies has been explained, which has involved the ex-
tension of HetSC to support this concept. The main
syntactical and semantical issues in the connection of
these methodology have been also addressed. It has
been concluded that OSSS+R basically implements a
timed-clocked synchronous MoC directly relying over
de DE strict-timed MoC of SystemC. These structures
can be well connected to untimed parts by means of
BPs or BCs which internally solve semantic conflicts
when empty buffer or buffer overflows conditions ap-
pear. In future work, the usage of more complex con-
nections in the shape of converter channels (able to
keep unchanged after a refinement process and to make
implicit data type convertion) and the definition of the
design flow will be faced.

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 65

References

[AJK] H. Al-Junaid and T Kazmierski. An Ana-
logue and Mixed-Signal Extension to Sys-
temC. Available at http://eprints.ecs.
soton.projectac.uk/10644.

[AND] ANDRES. http://andres.offis.de.

[ÅRH+06] K. Årzén, A. Robertsson, D. Henriksson,
M. Johansson, H. Hjalmarsson, and K. H.
Johansson. Conclusions of the ARTIST2
Roadmap on Control of Computing Sys-
tems. ACM Special Interest Group on Em-
bedded Systems Review, 3(3), July 2006.

[BLL+07] C. Brooks, E.A. Lee, X. Liu, S. Neuen-
dorffer, Y. Zhao, and H. Zheng. Hetero-
geneous Concurrent Modeling and Design
in Java (Vol 1&2:Introduction to Ptolemy
II). EECS Dpt, Univ. of California, Berke-
ley, UCB/EECS-2007-7, January 2007.

[DDM+07] A. Davare, D. Densmore, T. Meyerowitz,
A. Pinto, A. Sangiovanni-Vincentelli, G.
Yang, H. Zeng, and Q. Zhu. A
Next-Generation Design Framework for
Platform-Based Design. In DVCon 2007,
February 2007.

[FHSV03] F. Fernandez, F. Herrera, P. Sanchez, and
E. Villar. Embedded Software Generation
from SystemC. In SystemC: Methodologies
and Applications. Kluwer. March, 2003.

[FHT06] J. Falk, C. Haubelt, and J. Teich. Efficient
Representation and Simulation of Model-
based Designs in SystemC. In Proc. of
FDL’06, Darmstad, September 2006.

[Fos] Fossy. http://fossy.offis.de.

[GNOS03] E. Grimpe, W. Nebel, F. Oppenheimer,
and T. Schubert. Object-Oriented Hard-
ware Design and Synthesis Based on Sys-
temC 2.0. Kluwer, 2003.

[HOS+07] A. Herrholz, et al. ANDRES-ANalysis and
Design of runtime REconfigurable hetero-
geneous Systems. In Proc. of DATE’07,
Nice, April 2007.

[HV07] F. Herrera and E. Villar. A Framework for
Heterogeneous Specification and Design of
Electronic Embedded Systems in SystemC.
ACM Transactions on Design Automation
of Electronic Systems, 12(3):22, 2007.

[HVG+08] F. Herrera, E. Villar, C. Grimm,
M. Damm, and J. Haase. Heteroge-
neous Specification with HetSC and
SystemC-AMS: Widening the Support of
MoCs. In SystemC, in Embedded Sys-
tems Specification and Design Languages.
Springer, 2008.

[ITR07] International Technology Roadmap for
Semiconductors, 2007. Design. Available
in http://www.itrs.net/reports.html.

[Jan04] A. Jantsch. Modelling Embedded Systems
and SoCs. Morgan Kaufmann, June 2004.

[LH05] C.F. Liao and P.A. Hsiung. A System-
based Performance Evaluation Framework
for Dynamically Reconfigurable SoC. In
VLSI Design/CAD Symposium. Aug. 2005.

[OBC06] S. Orcioni, G. Biagetti, and M. Conti.
SystemC-WMS: Mixed Signal Simulation
based on Wave Exchanges. In Applications
of Specification and Design Languages for
SoCs. Kluwer, 2006. http://www.deit.
univpm.it/systemc-wms.

[PMC03] A. Pelkonen, K. Masselos, and M. Cupak.
System-Level Modeling of Dynamically Re-
configurable Hardware with SystemC. In
Proceedings of the 10th Reconfigurable Ar-
chitectures Workshop, RAW2003, 2003.

[PS04] H.D. Patel and S.K. Shukla. SystemC Ker-
nel Extensions for Heterogeneous System
Modeling: A Framework for Multi-MoC
Modeling. Springer, July 2004.

[SON06] A. Schallenberg, F. Oppenheimer, and
W Nebel. OSSS+R: Modelling and Sim-
ulating Self-Reconfigurable Systems. In
proc. of FPL’06. August 2006.

[SRHT07] M. Streubuhr, C. Riedel, C. Haubelt, and
J. Teich. System Level Modelling and Per-
formance Simulation for Dynamic Recon-
figurable Computing Systems in SystemC.
In Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von
Schaltungen und Systemen, Aachen, Ger-
many, March 2007.

[SV07] A. L. Sangiovanni-Vincentelli. Quo Vadis
SLD: Reasoning about Trends and Chal-
lenges of System-Level Design. Proceedings
of the IEEE, 95(3):467–506, March 2007.

[SWG] SWGen. http://www.teisa.unican.es/
SWGen.

[SWT+04] C. Schulz, M. Winterholer, Schweizer T,
T. Kuhn, and W. Rosenstiel. Object Ori-
ented Modelling and Synthesis of Systemc
Specifications. In In Proceedings of Asian
Pacific DAC, ASP-DAC’04, 2004.

[VGE04] A. Vachoux, C. Grimm, and K. Einwich.
Towards Analog and Mixed-signal SoC De-
sign with SystemC-AMS. In DELTA’04.
Perth, Australia. 2004.

[Wei08] Tim Weilkiens. Systems Engineering with
SysML/UML. 2008.

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 66

