
Public

IST-5- 033511 ANDRES

ANalysis and Design of run-time REconfigurable,

heterogeneous Systems

Project Duration 2006-06-01 – 2009-05-31 Type STREP

WP no. Result no. Lead participant

 WP1 D1.2b UC

Modelling of SW. Final Library elements.

Project coordinator name/organisation : Dr. Frank Oppenheimer – OFFIS

Issued by F.Herrera, S. Real, E.Villar- UC

Document Number ANDRES/UC/P/D1.2b/1.2

Classification ANDRES Public

Submission Date 2009-01-12

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

© Copyright 2008,2009. Diseño de Sistemas en Silicio S.A., Kungliga Tekniska
Högskolan, OFFIS e.V, Vienna University of Technology, Universidad de Cantabria, Thales
Communications S.A

This document may be copied freely for use in the public domain. Sections of it may be
copied, provided that acknowledgement is given of this original work. No responsibility is
assumed by the ANDRES project or its members for any application or design, nor for any
infringements of patents or rights of others which may result from the use of this document.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 2 of 118

History of Changes

ED. REV. DATE PAGES REASON FOR CHANGES

FHe,
SRe,

EVi

1.2 2009-01-12 118 Submitted Version.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 3 of 118

1. Index

1. Index .. 3
2. Introduction .. 6

2.1 Motivation and Relation to ANDRES.. 6

2.2 Improvements and Extensions from D1.2a .. 6

2.3 Content and Document Structure ... 7

3. HetSC methodology .. 9

3.1 HetSC principles .. 9

3.2 Benefits of HetSC in the development of concurrent SW ... 9

3.2.1 Domains supported.. 9

3.2.2 Efficient support through MoC Abstraction and HetSC Formalization.................. 10

3.3 The HetSC library .. 11

3.4 Specification methodology... 13

3.4.1 HetSC Graphical representation .. 14

3.4.2 General Specification Methodology.. 14

3.4.3 Single-MoC Specification ... 15

3.4.4 Heterogeneous Specification... 16

3.5 Installation of the HetSC Library ... 17

3.5.1 Development Platform .. 17

3.5.2 Need of SystemC patch removed for HetSC1.2 and SystemC-2.2.0. 17

3.5.3 Installation ... 17

3.5.4 Removing build directory.. 18

3.5.5 Uninstall HetSC library ... 18

3.5.6 How to use the HetSC library.. 18

3.5.7 Examples ... 19

4. HetSC extensions and improvements.. 20

4.1 HetSC documentation .. 20

4.2 Connection of HetSC with SystemC-AMS.. 21

4.3 Connection of HetSC with OSSS+R.. 22

5. SWGen methodology .. 24

5.1 Advantages of the SWGen methodology ... 24

5.2 Scope of the SWGen methodology .. 24

5.2.1 Type of Input SystemC code... 24

5.2.2 Type of software code generated .. 25

5.2.3 Type of Target and Development platform... 25

5.3 Basics of software generation in SWGen... 25

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 4 of 118

6. SWGen Extensions and Improvements .. 27

6.1 Introduction .. 27

6.2 SWGen Implementation of Clocked Synchronous (CS) Specifications in SystemC..... 27

6.2.1 Clocked Synchronous SystemC supported ... 27

6.2.2 Implementation fundamentals ... 29

6.2.3 POSIX port .. 32

6.2.4 Contribution in the field of eSW generation from CS specifications...................... 33

6.3 Other SW extensions.. 35

6.3.1 Extension of SWGen for eSW generation of eSW Synchronous Reactive Models 35

6.3.2 Generation and Publication of a User Manual .. 37

6.3.3 Additional Port to µC/OS-II embedded RTOS API.. 37

6.3.4 Improved handling of Makefiles ... 39

7. Adaptive Software .. 40
8. Adaptive Software in ANDRES .. 43

8.1 Relation to ANDRES and Contribution ... 43

8.2 Formalization of Adaptivity: Adaptive Processes.. 45

9. Software Implementation of Adaptive Processes .. 47

9.1 Fundamentals ... 47

9.2 Parameter-based Adaptive Process in Software... 49

9.3 Mode-based Adaptive Process in Software.. 53

9.4 Function-based Adaptive Process in Software... 55

9.5 Process-based Adaptive Process in Software... 57

9.6 Self-Adaptive Process in Software... 60

9.7 Implementation of Synchronous APs... 60

10. Adaptive Processes in HetSC ... 61

10.1 Introduction .. 61

10.2 Types of HAPs ... 62

10.2.1 Untimed HAPs .. 63

10.2.2 Synchronous HAPs ... 64

10.3 Patterns for Untimed HAPs.. 67

10.3.1 Untimed Parameter-based Adaptive Process .. 67

10.3.2 Untimed Mode-based Adaptive Process ... 72

10.3.3 Untimed Function-based Adaptive Process .. 76

10.3.4 Untimed Self-Adaptive Process .. 80

10.4 Patterns for Synchronous HAPs... 81

10.4.1 Clocked Synchronous HAPs (CS-HAPs).. 81

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 5 of 118

10.4.2 Synchronous Reactive HAPs (SR-HAPs) ... 86

10.5 Patterns for process-based HAPs ... 91

10.5.1 Process-based Adaptive Process ... 91

10.5.2 Heterogeneous prHAPs ... 94

11. HetSC Templates for Adaptive Processes .. 98

11.1 Using a HAP template.. 99

12. Adaptive HdS.. 110
13. Conclusions ... 113
14. Future Work ... 114
15. References ... 116

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 6 of 118

2. Introduction

2.1 Motivation and Relation to ANDRES

In this document, the final library elements for software specification and implementation in
the ANDRES framework for the design of Adaptive Heterogeneous Embedded Systems
(AHES) are described. These library elements correspond to those of the HetSC and SWGen
specification and SW implementation methodologies respectively.

In the ANDRES project, HetSC [HSCW] and SWGen [SWG08] methodologies have been
extended and integrated in the ANDRES AHES specification and design framework with a
specific objective: the modelling and implementation of the software part of the AHES
system. HetSC is used for the former objective, while SWGen is used for the latter one.

Several tasks have been completed to adapt and improve the HetSC and SWGen
methodologies&libraries and to enable their integration in the ANDRES AHES development
environment. It includes the following issues:

• Fixing the stable releases of the C/C++ compiler, SystemC library, etc. This figures
out in two recent and new releases of HetSC and SWGen libraries (HetSCv1.3 and
SWGenv1.2) and on their related documentation.

• Defining and enabling interfaces between HetSC and the other SystemC-based
methodologies involved in the ANDRES project, namely SystemC-AMS and
OSSS+R.

• Extending the software generation capabilities of SWGen to cover the clocked-
synchronous domain

• Extensions defining how adaptivity is specified in HetSC have been provided. These
extensions provide new methodological guidelines and patterns to specify HetSC
Adaptive Processes (HAPs). Such patterns are based on the formalization of adaptivity
done in [D11A], where abstract adaptive objects (AAO) take the shape of Adaptive
Processes (AP). As well as new methodological guidelines, additional library elements
have been provided to the HetSC library. These are the HetSC Adaptive Process
(HAP) templates.

• Proposing schemes for solving software generation of synchronous reactive
specification.

• Identification of new interesting issues related to adaptive software and related to
dynamically reconfigurable hardware, proposing new research objectives not covered
by ANDRES and even other related projects UC-GIM is currently involved in.

2.2 Improvements and Extensions from D1.2a

For the reader aware of [D12A], this document provides the following novelties:

• New separated chapters to explain the extensions of the HetSC and SWGen
methodologies.

• A state of art section provides a global view of adaptive software and places better the
ANDRES approach to adaptive software.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 7 of 118

• Contribution done by this work to the state of art on the development of adaptive
software is more explicitly explained.

• Refined relationship with the ForSyDe metamodel.

• Patterns for specifying HAPs are separately dealt from HAP SystemC templates, now
available in the HetSC library. A chapter is used for each issue, which clearly
distinguish the specification patterns from the available HAP templates.

• Adaptivity is addressed for the untimed and for the synchronous domains ([D12A]
only covered untimed domain).

• The explanation of HAP patterns has been extended and improved. The different
taxonomies of HAPs are now introduced. Moreover, each HAP pattern explanation is
more structured, including now a section explaining the intended application of the
pattern and a generic pseudo code of the pattern before the HetSC example (which
already appeared in [D12A]).

• Explanation of process-based HAP (prHAPs) is moved to the end of HAP explanation
as a special case testing the limits of SystemC language for the specification of
adaptive processes. Feasible patterns for the prHAP are presented and possible
interesting usages presented.

• The final state of the specific library elements of HetSC for specification of Adaptive
Processes (HAPs) is reflected.

• Other sections regarding to Motivation, Content and Document Structure, Index,
Conclusions and Future Work have been accordingly updated.

2.3 Content and Document Structure

This document is structured as follows:

Chapters 3 and 5 are in charge of introducing the HetSC and SWGen methodologies. In order
to limit the extension of this document, the basic fundamentals of the methodologies are
explained, while most of details can be found in the related documentation [HSCW] and
[SWG08] updated and released as a result of the work performed in ANDRES.

Chapters 4 and 6 are dedicated to explain the most important ANDRES related extensions of
HetSC and SWGen methodologies respectively.

Chapter 4 reports the most important HetSC extensions, which have to do with the connection
with the OSSS+R and SystemC-AMS specification methodologies, and with the availability
of the HetSC documentation. Other minor extensions, related to the host development
platform, compiler and SystemC versions supported are already covered by Chapter 3.

Chapter 6 reports, as the most important extensions of SWGen, the support of synchronous
models, included an already implemented POSIX port for the clocked synchronous domain;

the availability of a related user manual; the availability of a µC/OS-II port; and the provision
of a more comprehensible and useful structure of Makefiles.

Chapter 7 overviews different concepts and approaches to Adaptive Software. This serves to
place into context the contributions done and reported by this document.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 8 of 118

Chapter 8 fixes and explains the major contributions done in ANDRES in the field of adaptive
software. Later on, it provides a brief overview of the general concept of Adaptivity
developed in ANDRES, namely the Adaptive Process (AP).

Chapter 9 provides a reflection of how (untimed) APs can be implemented in software by
using a software programming language, like C++, and a generic RTOS API. It also relates
the formalization presented in Chapter 8 and the requirements of a software implementation
technology, like SWGen, overviewed in Chapter 5. As well as generality to the discussion,
this reflection should clearly show to a reader non familiar with the SWGen methodology that
the different types of adaptivity described are useful and common (although seldom coded in
a ruled or systematic way) in embedded software.

Chapter 10 provides guidelines and patterns to specify APs in SystemC following the HetSC
methodology. First of all, it explains the types of APs covered, which includes the untimed
and the synchronous domains, and the AP types described at the end of Chapter 8. Later on,
each case is covered in a regular manner, explaining the intended usage of each HAP, giving
specification patterns as SystemC pseudo-code, and providing a related example.

Chapter 11 explains the HAP SystemC templates included in the HetSC library, and how they
provide complementary advantages to the availability of the specification patterns described
in Chapter 10. The advantages of these templates, their capabilities and their related
guidelines are explained and shown with some of the examples provided within the last
version of the HetSC library.

Chapter 12 introduces the concept of Adaptive HdS (AHdS) which arises from the connection
of Software with Dynamically Reconfigurable Hardware (DRHW).

Chapter 13 provides the final conclusions.

Chapter 14 addresses future interesting work motivated by the results achieved and reported
in this document.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 9 of 118

3. HetSC methodology

3.1 HetSC principles

HetSC [HSCW] is a methodology which enables heterogeneous specification of complex
embedded systems in SystemC. Thus, it enables the specification of different parts of the
system under different Models of Computation (MoCs) [Jan05].

3.2 Benefits of HetSC in the development of concurrent SW

Support of heterogeneity is necessary to deal with the growing complexity, concurrency and
heterogeneity of electronic embedded systems. HetSC is a methodology which aims to the
complete design of a HW/SW embedded system. In the scope of ANDRES, it will be focused
for the SW design flow. Thus, in this section, the main benefits of employing HetSC for the
development of concurrent software are overviewed.

HetSC provides a set of advantages that can make the design of concurrent SW for embedded
systems more systematic, safer and efficient. HetSC defines a set of specification rules and
coding guidelines for each specific domain or MoCs. This makes the design task more
systematic. Each part of the system is specified at the needed abstraction level, focusing on
the important details and optimizing simulation speed. In addition, the fulfilment of MoC
specification rules provides useful properties when handling concurrent specifications, such as
determinism, deadlock protection, boundness, etc, which can be easily lost when SystemC
language (or a programming language) is freely used. HetSC focus on determinism. This is a
property targeted by every MoC currently supported by HetSC. HetSC is a specification
methodology, which let reach mentioned properties without consideration of some
implementation details, such as scheduling policy. This enables the targeting of the HetSC
code to either software or hardware refinement. In any case, HetSC also supports a direct flow
to SW implementation through a SW generation methodology called SWGen [SWG08].

3.2.1 Domains supported

HetSC supports several domains:

• Untimed domain: It let specify in an abstract way concurrent models where the time
associated to process computation is unknown, but where processes are able to
communicate and synchronize among them in order to cooperate and fix certain order
relationships between the events, data consumtions and productions. This modelling
approach is usual in concurrent software programming, when using threads, processes
and primitives for their communication&synchronization like shared variables, mutexes,
flags, sockets, etc. With respect to concurrent software programming, HetSC enables a
more abstract description (for instance, eliminating software implementation details like
scheduling policy. priorities, etc. It also enables the usage of the specification for
performance estimation, software generation and other system-level related techniques.
Moreover, HetSC provides more specific groups of rules which match more specific
modelling approaches. Each of these approaches provides the advantage of ensuring
properties like determinism, but they distinguish among themselves by their ability to
make feasible the analysis and/or ensure static schedulability, deadlock protection, etc.
The modelling approaches or MoCs currently supported in the untimed domain of
HetSC are Bounded Kahn Process Networks (BKPN), Kahn Process Networks (KPN),

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 10 of 118

Communicating Sequential Processes (CSP), Synchronous Data flow (SDF) and their
derivatives, such as Homogeneous SDF (HSDF).

• Synchronous domains: HetSC provides guidelines and specification facilities to build
SystemC-based specifications handling a more detailed level of time handling in the
specification. In these specifications, the user specifies concurrent and cooperative
computations which have to react to specific local or global events with tight response
requirements. At specification level, the computations are assumed to be infinitely fast.
This again shifs performance estimation to a later and different design activity where the
study of the fulfilment of time constraints must consider the time dimension of process
computations (then infinitely fast condition has to be substituted by sufficiently fast
condition). The infinitely fast reaction means that computations cooperating to provide a
result for a given stimulus are considered to be synchronous. This approach is familiar
to software developers in charge of implementing real-time reactive software. HetSC
provides solutions for the specification of these kinds of systems, again from a system-
level perspective. More specifically, Synchronous Reactive (SR) and Clocked
Synchronous (CS) approaches are supported.

• Timed domain: It comprises the timed MoCs already supported in SystemC, such as
Discrete Time (DT) and Discrete Event (DE). Moreover, the last version of the HetSC
library has been made compatible with the SystemC-AMS library, useful for the support
of analogous MoCs in SystemC [HVG07].

3.2.2 Efficient support through MoC Abstraction and HetSC Formalization

One of the most characteristic features of the HetSC methodology is that it is directly and
efficiently built on top of the SystemC standard kernel. This kernel is based on a Discrete-
Event (DE) strict-time MoC. HetSC performs an efficient and predictable mapping of the
events of the supported MoCs over the DE strict time MoC.

General Specification Methodology

HetSC Heterogeneous Spec. Methodology

General Rules and Guidelines

MoC rules and guidelines

MoC 2 ...

Base MoC

(core language + simulation kernel)

KPN
PN

CSP

Abstraction

...

RTL

HetSC (primitives + checks.)

SystemC Standard Kernel (DE strict-timed MoC)

MoC 1
MoC 3

MoC 4

SystemC

Heterogeneous

layer

General

layer

Core Language

layer

Core Primitives

Figure 1. The HetSC specification methodology is over the DE strict-time MoC of the SystemC kernel.

The immediate advantage of this approach is that there is no need for MoC specific solvers,
which provides efficiency to the methodology. Several results for the abstract MoCs
supported show that simulation speed is close to those obtained with MoC specific solvers.

The analysis of simulation results requires the abstraction of the time information. This
abstraction depends on the MoC. That is, if a specification under an untimed MoC is being
simulated, the time information of the simulation results has to be abstracted. This is
represented in Figure 2. On its lefts hand side, write accesses to channel ch1 and channel ch2
are abstracted as crosses. In the simulation, each write access has associated time information.
This has been depicted on the right hand side of Figure 2; where crosses are over its

associated SystemC time information, that is a (t,δ) coordinate, where t represents the time

stamp and δ the delta cycle (relative to the time stamp).

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 11 of 118

 ch1

ch2

to

∆∆∆∆o ∆∆∆∆1 ∆∆∆∆2 ∆∆∆∆3 ∆∆∆∆4 ∆∆∆∆5

t1 t2

wch10

wch21 wch23

wch12

wch22

wch11

wch20

< <

< < <

Figure 2. Abstraction of time information.

In the specification and analysis of the simulation results of an untimed model, the HetSC user
only considers the order relationships between these write events. Untimed specification only
fixes such order relationships, while nothing is stated over the rest of time information.
Therefore, only order information has to be extracted from the simulation trace (depicted
through ≤ symbols on the right hand side of Figure 2). In this figure, each wchij event has a

(t,δ) coordinate associated in the simulation trace. However, only order relationships between
events is relevant (i.e. wch10 ≤ wch11 ≤ wch12 ≤ …., showing that write accesses to ch1 are
sequentially done). More specifically, it has to be considered that write events of ch1 and
write events of ch2 are unrelated since ch1 and ch2 channels belong to decoupled networks.
Similar reasoning applies for other untimed and synchronous MoCs in the HetSC
methodology. This is a feasible reinterpretation of the simulation semantic, consisting in
neglecting the information which the MoC does not handle. This flexible interpretation of
time information provides enough flexibility for placing the write events in other points of the
time axis, as a consequence of further design steps.

This is part of the task of formalization of HetSC in ForSyDe, which, as commented, is work
in progress and will be reported in further documents of ANDRES.

3.3 The HetSC library

The HetSC methodology is based on a set of specification facilities. Whenever possible they
are taken from the OSCI SystemC library. The HetSC library, a proof-of-concept library
associated to the HetSC methodology, provides a set of facilities to cover the deficiencies of
the SystemC core language for heterogeneous specification. Therefore, in order to enable the
compilation and execution of HetSC specifications, the HetSC user only needs to install the
OSIC SystemC library and the HetSC library.

Other SystemC-based

Specification Libraries
HetSC

Library

OSCI SystemC

Library

C++ Compiler

...

Figure 3. The HetSC library is installed over the OSCI SystemC library.

As mentioned, the support of some specific MoCs requires new facilities, not included by the
SystemC library. These facilities are:

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 12 of 118

• Specification facilities, such as interfaces, channels, etc. They provide the specific
semantic content and abstraction level required by their corresponding MoC.

• Facilities for specifying HW/SW partition and other information which is used by
other system-level design activities (such as software generation or time profiling).

• MoC rule checkers. These are facilities, often transparent for the HetSC user, which
help to detect and locate MoC rule violations in the specification.

• Facilities for generating MoC specific reports.

• Facilities for assisting the debugging task of concurrent specifications.

The following tables show important specification facilities of the HetSC 1.3 library: Table 1
shows HetSC interfaces; Table 2, HetSC channels; and Table 3, HetSC border channels.

MoC Interfaces

CSP uc_caller_if<T>

uc_accepter_if<T>

uc_rv_if<T>

uc_sync_if<T>

PN/KPN sc_fifo interfaces ...

PN(1) (with fifo of sizes=1)

Equivalent to HSDF (HSDF)

uc_simple_read_if<T>

uc_simple_write_if<T>

SDF uc_arc_introspection_if<T>

uc_arc_prod_seq_if<T>

uc_arc_prod_dir_if<T>

uc_arc_cons_seq_if<T>

uc_arc_cons_dir_if<T>

uc_arc_prod_if<T>

uc_arc_cons_if<T>

uc_arc_if<T>

SR uc_SR_read_if<T>

uc_SR_write_if<T>

uc_SR_if<T>

KPN/

PN/

CSP-REFINED

uc_sig_client_in_if<T>

uc_sig_client_out_if<T>

uc_sig_server_in_if<T>

uc_sig_server_out_if<T>

uc_sigclocked_client_in_if<T>

uc_sigclocked_client_out_if<T>

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 13 of 118

uc_sigclocked_server_in_if<T>

uc_sigclocked_server_out_if<T>

I/O uc_uart_if

Table 1. HetSC interfaces.

MoC MoC channels

uc_frv

uc_rv

uc_rv_uni

CSP

uc_rv_sync

PN uc_fifo

KPN uc_inf_fifo

HSDF uc_simple_channel

SDF uc_arc_seq

SR uc_SR

PN-refined uc_sigclocked_fifo

Others uc_bucket, uc_protected, uc_shared

Table 2. HetSC channels.

MoC connection Border Channels

PN-CSP uc_fifo2rv

uc_fifo_SR PN-SR

uc_SR_fifo

uc_inf_fifo_SR KPN-SR

uc_SR_inf_fifo

uc_signal_inf_fifo RT(HW)-KPN

uc_inf_fifo_signal

Table 3. HetSC border channels.

3.4 Specification methodology

The HetSC methodology defines a set of specification rules and guidelines about how to use
the specification facilities provided by the SystemC and HetSC libraries to build a
specification under a specific MoC. Moreover, the methodology supports a smooth integration
of several MoCs in the same system specification.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 14 of 118

The HetSC Specification Methodology provides two levels of rules. This has been reflected in
Figure 1. There is a first level of rules and guidelines which apply for every MoC supported
by the HetSC methodology. This level is called General Specification Methodology. As well
as the specification task, these rules facilitate the application of other design activities to be
carried out at a very high abstraction level (system-level). They also facilitate the codesign
flow (software generation, hardware synthesis and HW/SW interface generation). The second
level enables single-MoC specification and heterogeneous specification. This includes the
specification under different MoCs and connection of MoCs through MoC interfaces.

3.4.1 HetSC Graphical representation

endless
process

module
port

interface

channel

export

Computation

Communication

Hierarchy

finite
process

Environment

System

IP

channel access

binding

Figure 4. Basic specification facilities of the HetSC methodology.

HetSC provides a graphical representation of the specification facilities, shown in Figure 4. It
enables a quick and intuitive view of the specification. However, the complete information of
the specification is in the HetSC specification. Further details are found in the HetSC user
guide [HSCW].

3.4.2 General Specification Methodology

The specification methodology establishes basic rules and methodological guidelines for
writing an executable specification which encloses both the test bench and the system
modules (instances deriving the sc_module class). By default, all these rules are common for
each MoC supported. When one rule does not applies (or does it with any nuance) in a
specific MoC, it is made explicit. The most important rule of the General Specification
Methodology is the strict separation between computation and communication. This is done
stating that specification processes communicate only by means of channels. Although
SystemC channels have, in general, an arbitrarily complex semantic, the aim is that HetSC
channels have a bounded semantic, limited to what can be understood as necessary for a
correct transfer of data. Thus, HetSC channel semantic only handle questions as the bufferng
size of the channel, synchronization policies, sense(s) of transfer, etc. In other words, any
semantic that can be interpreted as functionality or computation is to be specified within
processes.

Another important point is that the specification methodology focuses the task of the designer
on writing concurrent functionality as C/C++ sequential algorithms, typed as the content of
HetSC processes (SC_THREADs and SC_METHODs). Processes are communicated by
instancing available SystemC and HetSC channels and accessing them from within process
code. Further details about the General Specification Methodology are found in the HetSC
user guide [HSCW].

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 15 of 118

3.4.3 Single-MoC Specification

This level provides a new set of facilities (indeed, most of the facilities provided by the HetSC
library) and rules that complement and, only eventually and explicitly, override the rules of
the general specification methodology.

In a first stage, the rules and guidelines to specify under each single MoC are given. Several
untimed MoCs are supported. A process network (PN) can be written as a network of
SC_THREADs communicated through uc_fifo channels. This HetSC channels has a similar
semantic to the sc_fifo standard channel. However, the uc_fifo channel prevents the use of
non-blocking and introspection accesses, which is required to ensure the determinism of the
specification. The uc_inf_fifo channel enables the approach to KPN MoC. It provides and
unbounded buffering semantic, thus a non-blocking write access. This channel also reports the
maximum buffering size. When time domain constraints are present, this enables a refinement
of the KPN specification to a bounded process network (PN). HetSC enables the specification
of tightly coupled networks through the CSP MoC. This MoC is again a network of
SC_THREAD processes which are communicated by up to three kinds of rendezvous
channels, the uc_rv_sync channel, the uc_rv_uni and the uc_rv channel. All of them share the
rendezvous synchronization semantic, which relates N processes (N= 2 for the latter two
rendezvous channels). Under the rendezvous synchronization semantic, any process arrival
involves a blocking except for the case when N-1 of the N process involved in the rendezvous
has already arrived. In such a case, there is no blocking and every involved process is
resumed. HetSC supports a dynamic approach to the SDF MoC. The uc_arc channel enables
the a-priori specification of the consuming and producing rates, which immediately fixes the
size of the uc_arc channel. SDF nodes are implemented as SystemC processes. SDF process
style is constrained in HetSC since it has to represent a computation quantum. Each
computation quantum is implemented as an iteration of an infinite loop in a SC_THREAD.
The input uc_arc channels are read at the beginning of the iteration, while the output uc_arc
channels are written at the end of iteration. HetSC provides some specific reports for the SDF
MoC, such as the firing schedule of the SDF node graph. In every untimed MoCs several
checks are available, such as those restricting the number of processes which access as reader
and as writer each channel instance.

Synchronous MoCs are supported. The Synchronous Reactive MoCs is supported through the
abstraction of the prefect synchrony hypothesis over the SystemC time axis. This hypothesis
dictates that the system instantaneously reacts to the environment stimulus. This instantaneous
reaction is interpreted in SystemC as a computation that takes no time in terms of the
SystemC time stamp (t coordinate). However, it can involve an advance of one or more delta

cycles (δ) in the same time stamp. In this way, a SR specification in HetSC is composed of a
set of generator processes (SC_THREAD processes), usually representing the environment,
which write tokens through uc_SR (or uc_buffer) channels. These channels present a similar
semantic to the sc_buffer standard channel, but include some useful checks which constraint
the specification style to what it is demanded by the SR MoC in HetSC. Specifically, these
channels oblige that the generator processes do not write more than once in the same time
stamp. That is, they limit up to one domain event per each time stamp. Thus, each time stamp
is a slot. The uc_SR channel is also a mean to link the processes of a SR specification in what
is called a reactive chain. The uc_SR channel involves a reaction of the attached reader
process, enabling at the same time the transfer of a data token. This reaction is given in the
next delta cycle, without time stamp advance, which is coherent with the interpretation of
perfect synchrony in HetSC. The uc_SR channel also enables a dynamic check for detecting
the violation of the perfect synchrony hypothesis. Moreover, the perfect synchrony condition
can be relaxed. This means letting some time advance in the reaction. In this case, the analysis

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 16 of 118

of the reaction time is automatically done to detect if it was quick enough to cope with the
speed of domain events. An activity analysis utility is able to report how many deltas where
consumed at each slot of a SR specification in HetSC. The CS MoC is conceived in HetSC as
a particular case of SR where there is only one triggering input, the clock. This clock can be
produced through a signal or a buffer channel. Then, system processes need to be sensitive
only to the clock signal and the communication among processes is done through sc_signal
channels. Therefore, behavioural and RTL hardware styles of SystemC are particular
specification styles of a CS MoC.

3.4.4 Heterogeneous Specification

MoC integration is smooth in HetSC because it employs elements of the same language for
the connection: SystemC channels and processes, called in the methodology Border Channels
(BCs) and Border Processes (BPs). The HetSC methodology gets into less straightforward
semantic issues related to MoCs' connection. It establishes a classification of MoC interfaces
(untimed-untimed, untimed-synchronous, etc). Each type of connection presents specific
issues. Most important ones have to do with time adaptation, specifically when a different
level of detail is handled in the MoCs connected (such as in untimed-synchronous
connections). The HetSC library currently provides some border channels for different kind of
MoC couplings.

More details about how to write single MoC specification and how to integrate them in an
heterogeneous SystemC specification are found in the HetSC user guide [HSCW].

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 17 of 118

3.5 Installation of the HetSC Library

3.5.1 Development Platform

The last version available is the HetSCv1.3 library. This version has been checked on a
platform with the next characteristics:

• Linux kernel Linux 2.6.3.

• gcc-4.1.2 compiler.

• SystemC-2.2.0.

SystemC-2.2.0 adapts to the IEEE1666 standard [IEEE06]. HetSC 1.2 beta does not keep
backward compatibility with previous releases of the SystemC library. This has enabled a
more efficient and clear implementation of HetSC, ready for the development and use by
other ANDRES partners. For previous releases of SystemC, the previous version of the HetSC
library, HetSCv1.1, is available.

3.5.2 Need of SystemC patch removed for HetSC1.2 and SystemC-2.2.0.

The HetSC v1.3 library is installed directly over the SystemC-2.2.0 library. HetSC-v1.1, the
last version before the start of ANDRES needed the previous application of a patch for the
SystemC-2.1.v1 release. This patch is provided by the GIM-UC [HSCW]. It provides a fix of
the count of deltas which enables a correct support of the SR MoC. This patch provides other
fixes and features which are useful but not required a correct support of the HetSC features.
One is a fix for a check related to the sc_fifo standard channel. The other is an extension for
enabling pseudo-random scheduling, a feature not implemented by the SystemC library yet.

These additional fixes and features are being provided for SystemC-2.2.0. As has been
mentioned, its installation is not necessary. It is recommended for a correct use of the standard
sc_fifo channel and for enabling an improved coverage of system-level verification performed
through simulation [HeVi07]. For instructions about how installing the UC patchs refer to the
HetSC user guide [HSCW].

3.5.3 Installation

In order to build and install the HetSC library, the next instructions are given:

• It is assumed that the HetSC folder is untared and placed in the path $(untar_path). For
instance, if you untar the HetSC1.3.tar.gz file in /home/usr/src, then it creates a
/home/usr/src/HetSC directory, that is, untar_path=/home/usr/src/HetSC).

Make sure that your compiler is a right version. Use the gcc –v command for that. Make
also sure that the SystemC installation is done with the same gcc compiler version that
you will use to install HetSC library.

• Set and export the SYSTEMC_PATH variable. For instance, in Linux, write:

$SYSTEMC_PATH=/home/user/soft/systemc-2.2.0/installdir

$export SYSTEMC_PATH

• Open and edit the Makefile.defs file. You only have to edit the next variables:

o HETSC_PKGDIR: This is the path where the HetSC library has been untared.

 (For instance, in our example, HETSC_PKGDIR=/home/usr/src/HetSC)

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 18 of 118

o INSTALLDIR: This is the path where the HetSC library will be installed

 (For instance, INSTALLDIR = /home/usr/soft/HetSC)

- It is not recommended this directory to be the same as the HETSC_PGDIR.

 - INSTALLDIR could also be the SystemC installation dir. Then environment
variables to set SystemC paths could be reused. The library is prepared for a clean
uninstall without touching SystemC installation. However, it is recommended a
separated installation directory.

o BUILDIR: This is the path where the HetSC library is compiled

 (For instance, BUILDIR=$(INSTALLDIR)/buildir)

o (ONLY FOR HetSC1.1) SYSTEMC: This is the path where your SystemC library is
installed.

 (For instance, SYSTEMC=/home/usr/soft/systemc-2.1.v1/installdir)

• After these variables are set, save the file and compile&install the library through the
make command at the $(HETSC_PKGDIR) directory:

 $make

Then the compilation is carried out. These two steps can be separately done by executing:

 $make build (for compilation of the library)

 $make install

Further details on the installation of previous versions of HetSC are found in the HetSC user
guide [HSCW].

3.5.4 Removing build directory

You can remove object files to save disk without perturbing the installation. In order to do
this, just execute the next command at the $(HETSC_PKGDIR) directory:

 $make clean

3.5.5 Uninstall HetSC library

The HetSC library can be uninstalled just by executing the next command at the
$(HETSC_PKGDIR) directory:

 $make uninstall

3.5.6 How to use the HetSC library

In order to use the HetSC library you should include the “general.h” header (or the
“HetSC.h” if you are not using other UC libraries) in your specification. This header already
includes the “systemc.h” header. Before compiling your application, ensure that you include
$(INSTALLDIR)/include path in the include paths, the static library path, $(INSTALLDIR)/lib,
and the HetSC library it self.

For instance, if you write a specification file called myspec.cpp, then you can use the
command:

 $g++ -I$(INSTALLDIR)/include -L$(INSTALLDIR)/lib -o myspec.x -lHetSC

myspec.cpp

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 19 of 118

to obtain the binary executable myspec.x.

3.5.7 Examples

The library comes with a set of simple examples which show some of the features of the
HetSC library and can be taken as a reference for constructing other examples.

To compile them, move to the /examples directory in the source directory and edit the
Makefile.defs file to indicate the installation directory. After that, type the next command:

 $make –f Makefile.sys

Then all provided examples will be compiled. All the examples can be cleaned (removal of
object and executable files) through the next command.

 $make –f Makefile.sys clean

In order to compile and clean a specific group of examples, then enter the specific directory
and compile them with the same command. For example, to compile only KPN examples,
enter the /examples/KPN directory and type:

 $make –f Makefile.sys

It is possible to compile and clean single examples entering their specific directory and
applying a rule of the Makefile.sys file. For instance, to compile the first example of KPN
directory you should type in:

 $make –f Makefile.sys example1

Most of the examples are ready to, through some simple comment/uncomment of define
clauses, to check many different features and behaviour of the HetSC facilities. For it, it is
necessary to recompile the specific example where you are making such editions.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 20 of 118

4. HetSC extensions and improvements

The last version released of the HetSC library incorporates also:

• A complete documentation available on-line on the HetSC website [HSCW].

• Guidelines, specification facilities and examples for the connection of HetSC with
SystemC-AMS.

• Guidelines and an example for the connection of HetSC and OSSS+R.

4.1 HetSC documentation

An important feature of HetSC is its methodological aspect, independently on the
complementary specification facilities provided by the HetSC library. Indeed, if SystemC
were 100% suitable for all the domains or Models of Computations covered by HetSC, no
kind of library extension would have been provided. In this sense, fixing a methodology
requires a comprehensive and detailed documentation. This aspect of the methodology has
been improved by making available in the HetSC website a full documentation section which
includes the following:

HetSC user manual: The core documentation where the basic principles of the methodology
are explained. It includes the general specification methodology, the graphical representation
and links to related documentation.

Annexes: They cover in more detail the different and distinctive aspects of the methodology.
The following Annexes are available:

• Annexe A: Documentation about the HetSC library (installation, specification
facilities, compatibility and connection with other SystemC-based libraries, etc).

• Annexe B: Addresses Mono-MoC specification in SystemC. It is composed of
different sections, each one dedicated to a domain or Model of Computation.
Currently, 6 annexes are available.

• Annexe C: Addresses MoC interfaces. This annexe, together with Annexe B, provides
the methodological support for system-level heterogeneous specification in SystemC.

• Annexe D: Documents experimental facilities.

• Annexe E: Addresses several aspects about older versions of HetSC, compatibility
with different versions of SystemC, and about patches provided for SystemC.

• Annexe F: Provides and editable document to facilitate the development of HetSC
graphical representation of SystemC specifications.

In deed, this document will serve to release an additional annexe about specification of
adaptivity in SystemC through the results of Chapter 10. It will also mean the extension of the
Annexe A with the facilities reported in Chapter 11.

Additionally, the documentation of the HetSC website provides additional documentation in
the shape of the presentations done in tutorials, workshops and conferences. Moreover, some
of the examples available in the ‘downloads’ section of the HetSC site have now an associated
documentation available.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 21 of 118

4.2 Connection of HetSC with SystemC-AMS

In [HVG07] the connection of SystemC-AMS and HetSC was explored. It was shown, that
both methodologies can collaborate to supp-ort a wide spectrum of MoCs. Moreover, the
collaboration of these methodologies provides an efficient balance between MoCs directly
supported over the DE strict-time kernel, and MoCs relying on additional synchronisation and
solver layers. The idea is that specific solvers are provided only for a set of MoCs where they
provide a significant simulation speed up. In this approach, the set of MoCs relying on solvers
corresponds to the analogue domain, where the simulation speed up can be of several orders
of magnitude, while untimed and synchronous MoCs can be satisfactorily supported directly
over the SystemC kernel. The exception would be fine grained SDF specifications, where the
speed up of a static SDF compared to a dynamic SDF could be significant. Thus, in these
cases, the static scheduling provided by the T-SDF solver of SystemC-AMS should be
favoured. Figure 5 shows how SystemC-AMS and HetSC complement each other.

DE kernel (SystemC 2.X)

 Synchronisation Layer

(Linear) DAE

solver

(linear)

networks

other

solvers

other

views
(linear)

DAEs

T-SDF
solver

T-SDF

models

SDF

(dynamic)

KPN

BKPN

CSP

...

synchronous

SR

CS

Beh.

untimed

RTL

analogue timed

SystemC-AMS HetSC

Figure 5. SystemC-AMS and HetSC collaboration provides a wide MoC coverage.

In [HVG07] has been shown that the connection of SystemC-AMS and HetSC can be done by
means of HetSC border processes and channels, at least in those cases where data type
conversion is not necessary.

In the ‘downloads’ section of HetSC a soundboard example, presented in [HVG07] website is
now available. The example is represented in Figure 6.

Figure 6. The soundboard example connects HetSC and SystemC-AMS parts in the same SystemC model.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 22 of 118

Such an example deals with the basic interfacing between untimed fifo-based models and the
timed-clocked synchronous models, which is the base of the SystemC-AMS approach. It also
deals with the interfacing between a synchronous reactive part and those parts of the system
described as linear electrical networks (LEN).

The work in [HVG07] has served to provide a more general and compact set of border
channels (tsdf_2_pn, pn_2_tsdf, uc_fifo2v, uc_signal2v, etc) and related guidelines which are
now documented in the Annexe C of the HetSC User Manual. For instance, Figure 7 shows
one of the border channels, tsdf_2_pn, used to communicate the T-SDF domain of SystemC-
AMS with blocking fifo-based process networks.

tsdf_2_pn<T> in out

(uc_fifo_blocking_in)
(sca_sdf_out)

 (SCA_SDF_MODULE) out

source

 in (SC_MODULE)

sink

sig_proc
(rate) R = 1

(rate) T = 1s

(uc_fifo)

(uc_inf_fifo)

Figure 7. Example of use of the tsdf_2_pn channel.

Moreover, in the ANDRES framework, converter channels have been developed [HDG07]

[HDG08], beyond the HetSC methodology. Converter channels incorporate the adaptation in
terms of time semantic (as border channels) and the features of polymorphic channels
[Sch07], which can save communication refinements when exchanging blocks in the
refinement of the initial specification. Converter channels also provide the additional feature
of automatic data type adaption, while border channels leave data types transferred within

channels untouched. Converter channels have been implemented for the KPN/BKPN ↔ T-
SDF conversion, where the KPN/BKPN MoCs are represented as FIFO. This implicitly also

solves KPN/BKPN ↔ LEN conversion, since LEN is basically synchronized to SystemC’s
DE-kernel via T-SDF. More detailed documentation about the conversions implemented and
the way to use converter channels can be found in [D15A] [D16A].

4.3 Connection of HetSC with OSSS+R

The connection of software and digital adaptive models in ANDRES has been and is being
tackled in ANDRES in two levels:

At specification level: The goal is to enable a SystemC-based abstract specification of
adaptive systems suitable for its implementation in platforms based on one or more
microprocessors (that is, on software) and partially dynamically reconfigurable hardware
(DRHW). Specifically, this is done by defining the mechanism for connecting HetSC
[HSC08] and OSSS+R [D13A] [OSS08] methodologies.

At implementation level: To goal is define a flow for SW and HW implementation on the
previously mentioned platform, based on the associated implementation technologies SWGen
[SWG08] and Fossy [FosW] (OSSS+R).

This section summarizes the connection at SystemC-level, which has been necessary to enable
the AHES ANDRES framework integrating the SystemC-based specification libraries (among
them HetSC and OSSS+R), and which do not integrate actually the implementation tools. The
advances done in the implementation level have been reported in [D24B].

In [HVH08] the basic structure, guidelines and specification facilities required to enable the
connection of the HetSC and OSSS+R methodologies are given. The basic structure of a

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 23 of 118

specification including HetSC and OSSS+R specification facilities proposed in [HVH08] is
shown in Figure 8.

Figure 8. Module and Concurrency structure of a HetSC/OSSS+R specification.

A main observation is that it is assumed that the reconfigurable objects and the named
contexts are part of the OSSS+R part and handled only by SystemC clocked processes.
OSSS+R is under a timed clocked MoC (similar as a Register Transfer Level or RTL from the
time domain point of view, plus the abstract capabilities provided by shared and
reconfigurable objects). Therefore, the connection of an untimed HetSC model with OSSS+R
models involves MoC interfaces. The proposal in [HVH08] is to use the HetSC facilities, like
border processes or border channels (BCs), like ch3 in Figure 8, which can be of a transactor
type, with one method call based interface and a signal based interface. In the HetSC website
[HSCW], an example where HetSC an OSSS+R models are connected has been left available.
This example starts from a system-level model composed of a set of producer and consumer
processes and an adaptive ALU specified as a HetSC adaptive process (HAP) as defined in
chapter 10. Then, ALU is assumed to be implemented in hardware and refined as an OSSS+R
reconfigurable ALU.

Later on, in [D24B], a scheme where untimed processes from the HetSC part are able to
access methods of an OSSS+R reconfigurable object has been proposed.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 24 of 118

5. SWGen methodology

SWGen [SWG08] is a library-based methodology (SWGen library), for automatic generation
of embedded software from SystemC, specifically, from HetSC code.

5.1 Advantages of the SWGen methodology

This methodology has several distinguishing features:

Single Source. The same SystemC (HetSC) code used for generating the executable
specification is used to generate the software binary code for the target implementation. This
is called single-source software generation [PHF04][FHSV03].

Automatic Generation. A few console commands serve to generate the source code and the
binary code.

Efficient generation. The generation removes all the implementation code of the SystemC
library which is not necessary for the implementation of the target embedded software. The
eliminated code corresponds to features for simulation over the discrete event kernel and other
system-level features provided by the specification libraries (SystemC and HetSC). Therefore,
the code generated is smaller and faster than if the cross-compilation of the HetSC application
included the cross-compilation of the SystemC library.

Based on a Realistic and Reliable SW platform. The software generation library generates
code which includes system calls to an embedded RTOS. That is, the RTOS is considered as
part of the target platform. This takes advantage of the current state of art in software
generation. Any commercial or well established embedded RTOS can be used. Thus, there is
no need to write or to synthesize an ad-hoc and untested RTOS.

Low demand for the port of the RTOS and the cross compiler. The SWGen library
requires a basic support of RTOS services and platform facilities. In addition, since the
SystemC library does not need to be cross-compiled, the demands for the port of the cross-
compiler are relaxed.

Design for Extensibility to new target platforms. The SWGen library is structured in
several translation levels. Each of these levels corresponds to different source code packages:
sc2cpp (for HetSC code that can be directly translated to C/C++), sc2rtos (for HetSC code that
needs to call RTOS services through a RTOS-API) and sc2platform (for HetSC code that need
to invoke services out of the RTOS-API).

5.2 Scope of the SWGen methodology

5.2.1 Type of Input SystemC code

The library supports basic SystemC features such as modularity, concurrency and separation
of computation and communication. More specifically, the general specification methodology
of HetSC is practically covered. In the current public release this includes the following
specification facilities: SC_MODULE, SC_CTOR, SC_THREAD, wait(double,sc_time_unit),
sc_main, sc_start; generic ports and basic port binding facilities; and some standard channels.
Not every SystemC constructs are supported. The support can be extended in future versions
of SWGen.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 25 of 118

5.2.2 Type of software code generated

The software generation produces C++ code which includes system calls to an embedded
RTOS. It includes C++ wrapping code to support an automatic translation from SystemC to
C++. There are two generation options. One is to stop at pre-processing time. Then, the
source C++ code is generated. The other one includes the application of the rest of the cross
tool chain to obtain the target binary code. This code can be downloaded to the platform
memory for its execution.

5.2.3 Type of Target and Development platform

The target is any HW/SW platform targeted by a C++ cross-compiler and supporting a RTOS
with a minimum set of services (basically, concurrency). The development platform can be a
PC or a workstation where the software development kit (SDK) runs. The SDK includes the
cross-tool chain (at least, the C/C++ cross-compiler and linker) and the embedded RTOS
(shortly named here RTOS, eRTOS or eOS).

5.3 Basics of software generation in SWGen

In the SWGen methodology, the HetSC and SystemC libraries are substituted by the SWGen
library. This means that the HetSC and SystemC specification facilities are substituted by an
efficient C++ implementation which, in general, incorporates system-calls to a RTOS-API
and low level calls to the underlying drivers. This has been graphically depicted in Figure 9.
In the Figure 10, the same has bee represented in terms of code.

SC_THREAD

v1

......

vn

sc_port

sc_interface

sc_channel

SC_MODULE

RTOS-API thread

v1

......

vn

uc_port
UC_MODULE

sc_fifo

uc_fifo_SS

SW

thread

Inter-thread

communication

SystemC

process
sc_event

Figure 9. Graphical representation of the SWGen generation.

#include “general.h”

#ifdef SW_SECTION

#include <sw_section.h>

sc_int<5> var;

sc_fifo<int> std_ch(“std_ch”);
uc_rv_uni<int> hsc_ch(“hsc_ch”);

SC_MODULE(producer) {

public:

 sc_port<…> out;

 void proc();

 SC_CTOR(producer) {
 SC_THREAD();
 }
};

sc_main() {
 …
 sc_start();
}

…

#endif

LEVEL = SW_GENERATION

#ifndef __GENERAL_H

#define __GENERAL_H

...

#if LEVEL == SPECIFICATION

 #include <hetsc.h>

 #include <systemc.h>

#endif

...

// TARGET SW GENERATION

#if LEVEL == SW_GENERATION

 // SW GENERATION LIBRARY

 #include <swgen.h>

#endif

...

#endif

general.h

...

#if (LEVEL==COSIMULATION)

 ||(LEVEL==SW_GENERATION)

// channels to SS channels

// std

#define sc_fifo sc_fifo_SS

#define sc_mutex sc_mutex_SS

...

// HetSC channels to SS channels

#define uc_fifo_channel uc_fifo_channel_SS

#define uc_rv_sync_channel uc_rv_sync_channel_SS

...

// TYPES

#define sc_uint uc_uint

...
#endif

sw_section.h
CPP

…
 // implementation facilities

…

uc_int<5> var;

sc_fifo_SS<int> std_ch(“std_ch”);
uc_rv_uni_SS<int> hsc_ch(“hsc_ch”);

UC_MODULE(producer) {
public:
 uc_port<> out;

 void proc();

UC_CTOR(producer) {
 UC_THREAD();
}
};

uc_main() {
 …
 uc_start();
}

…

…

Figure 10. Substitution of the HetSC specification facilities by C++ efficient implementation facilities.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 26 of 118

As can be appreciated, the concurrency and modular structure of the HetSC specification is
respected. The modular structure is respected in order to obtain a simple and safe translation
mechanism, where the hierarchy of visibility scopes is respected. A flattening of the code
would actually require name mangling. In addition, this mapping removes, as mentioned in
section 5.1, many SystemC features not necessary in SW generation. For instance, the sc_port
is substituted by an uc_port class. This is an almost empty class which only keeps binding
features. However, features such as static port checks are removed since they are only used at
system-level.

The concurrency structure is also preserved. SystemC processes are substituted by RTOS
threads. The complex data structure maintained for the handling of SystemC processes is
substituted by a minimum structure of data required to declare and handle SW threads. These
data include at least a thread handler and a stack variable.

The simulation-context class is a main class of the SystemC library in charge of implementing
the Discrete-Event (DE) simulation kernel of SystemC. Roughly, this DE kernel divides the
SystemC time in an elaboration and a simulation phase. The simulation phase is divided in
time advances called time stamps. Time stamps in delta cycles. Finally, delta cycles are
divided in evaluation and update phases. The elaboration phase is also subdivided. As can be
imagined, this requires a relatively complex set of data structures, classes, etc. The SWGen

library substitutes the simulation context class by an execution context class, which it is
basically in charge of declaring and resuming the threads of the software implementation. The
rest of the run-time features are provided by the RTOS itself.

The software generation for the communication is done in a channel basis. That is, the
SystemC implementation of system-level channels (which can be HetSC and SystemC
standard channels) is substituted by a functionally equivalent C++ implementation class. This
class has the same interface as the SystemC channel class (but without inheriting the
sc_interface class). The type of implementation depends on the destination of the processes
after the HW/SW partition. In terms of software generation there are two possibilities:
SW/SW channels and HW/SW channels. The former ones are in charge of communicating
threads corresponding to HetSC processes which were kept inside the SW partition. Its
implementation includes system-calls to inter-thread communication facilities. Then, for
instance, an uc_fifo channel admits several implementations depending on the inter-thread
communication facilities provided by the RTOS. This can be compared to the SystemC
implementation, which is based on SystemC event primitives (sc_event). The ability to select
among different channel implementations and the automation of such selection is a software
synthesis issue. That is, the software generation is driven to produce an optimum
implementation. What it is optimum depends on specific criteria (consume, speed, size, etc).
This is future work of the GIM-UC, out of the scope of ANDRES. HW/SW channels are
implementation classes which, as well as using system-calls to the RTOS-API, employ the
services of HW dependent software, like drivers or pieces of code directly accessing the
memory map. Implementation of I/O channels has the same requirements since it requires
access to I/O drivers.

More details about the supported development and target platforms, how to install and use the
library, etc, are found in the referred documentation [FHSV03] [PHF04] and in [SWG08]. In
the following chapters, how an adaptive process can be specified in HetSC and implemented
in software is dealt with. As will be seen, it will be closely related to how the SWGen
methodology generates software. Indeed, the code generated by the SWGen methodology is
basically the same kind of code which will be shown, plus the C++ wrapping code used for
the automatic translation from SystemC.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 27 of 118

6. SWGen Extensions and Improvements

6.1 Introduction

The support of adaptivity at different domains has involved the development and adaptation
of certain aspects of the SWGen methodology in ANDRES.

Among them, the support os automatic software implementation of synchronous models can
be considered the most innovative aspect. Specifically, the way these models are supported in
in SWGen has been defined, and an actual support for the clocked synchronous MoC (CS
MoC) given. This provides support for the software implementation of CS-HAPs. The SW
implementation for the CS-MoC has been done for the POSIX API, which has been included
in the last release of SWGen (SWGen v1.2). This has required and enabled the extension of the
Generation Set of SWGen, as will be explained later.

Additionally, other features of SWGen have been improved:

• Generation and Publication of a User Manual.

• Improved handling of Makefiles.

• Additional Port to µC/OS-II embedded RTOS API.

6.2 SWGen Implementation of Clocked Synchronous (CS)
Specifications in SystemC

6.2.1 Clocked Synchronous SystemC supported

Current support of SWGen for clocked synchronous (CS) models is based on the support of
the specification structure shown by Figure 11.

v

(sc_signal)

prod

sysclk (sc_clock)

(sc_signal)

(sensitive)

sc_in<bool> sc_in<bool>

sc_out<T1> sc_in<T1>

sc_in<T2> sc_out<T2>

user namespace

(sensitive)

wait()

wait()

wait()

SC_THREAD

SC_THREAD

Figure 11. SWGen can now generate eSW from a CS SystemC specification.

Clocked processes are specified by means of SC_THREAD processes, which get blocked on
wait() statements without any parameter. Such clocked processes have a static sensitivity list,
which is associated to a clock input port of sc_in<bool> type, and more specifically, to the
positive event returned by the pos() function associated to the clock input port. The following
piece of code shows the basic constructs supported.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 28 of 118

// module declaration with clocked processes inside

SC_MODULE(m1) {

 sc_in<bool> in_clk;

 sc_out<T1> out;

 sc_in<T2> in;

 void clocked_process() {

 …

 while(true) {

 // statements

 wait();

 }

 }

 SC_CTOR(m1) {

 SC_THREAD(clocked_process);

 sensitive << in_clk.pos();

 }

}

// sc_main

int sc_main(int argc, char *argv[]) {

 …

 // global clock

 sc_clock sysclk(1.0,SC_SEC);

 // sc_signal communication channels

 sc_signal<T1> sig1;

 sc_signal<T2> sig2;

 …

 // binding of sc_signals within the sc_main

 m1.in_clk(sysclk);

 m1.out(sig1);

 m1.in(sig2);

 ...

}

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 29 of 118

Clock input ports are bound to a sc_clock instance (sysclk in Figure 11). Currently, a single
sc_clock instance is supported per user namespace. The communication among clocked
threads is done by means of sc_signal channel instances able to transfer data of any type T.

Therefore, as well as the extension of the domains supported for software generation from
HetSC specifications (now, clocked-synchronous domain adds to untimed domain), the set of
specification facilities which have an interpretation as embedded software has been extended.
More specifically, the following specification facilities are added to those already supported
by the previous release of SWGen:

• wait() function.

• sensitive class.

• sc_in, sc_out ports.

• sc_clock class.

• sc_signal channel class.

Additionally, a software implementation for the sc_event class and for its related function
wait(sc_event) has been provided. The implementation of these constructs is given to the
effects of facilitating the structure and general porting of the SWGen library, rather than being
intended for its support from the system-level. Indeed, HetSC methodology does not allow
explicit usage of the sc_event class, that is, to make notifications and/or waits on sc_event
instances directly from the process body. In any case, the library will be able produce eSW
from specifications with explicit usage of sc_event instances (in case it is used out of the
boundaries of the HetSC methodology).

6.2.2 Implementation fundamentals

In SWGen, SC_THREAD processes specifying clocked synchronous processes are mapped to
the same eRTOS threads used to map the SC_THREAD processes representing untimed
processes. However, a main distinction comes from the availability of a software
implementation for the wait() statement in clocked synchronous processes. Such statement is
implemented as an unconditional blocking statement by means of RTOS facilities, which will
let process resumption only by a software positive event. The software positive event is
enclosed and generated by a software global clock.

A software event is implemented through the uc_event class. The uc_event class provides an
abstract wrapping to the internal eRTOS API calls actually used for the implementation of the
software event semantic. This class provides a shorted version of the sc_event class
supporting the immediate notify() method. Additionally, an implementation of a wait method
on the uc_event class wait(uc_event) is provided. The uc_event class and wait(uc_event)
function provide a direct support for specifications explicitly using the sc_event and
wait(sc_event) statements (thorugh a simple renaming at pre-processing time). However, as
mentioned in section 6.2.1, uc_event and wait(uc_event) are SW implementation facilities
mainly oriented to provide support to the rest of SW implementation classes.

The sc_clock_sw class is a software implementation class which supports the implementation
of the sc_clock specification class, used to specify the global clock(s). At the specification
(SystemC) level, the sc_clock class is a derivation of the sc_signal class. However, at the
eSW implementation level, the sc_clock_sw class is implemented as a software module
(inheriting the uc_module implementation class), which also inherits and implements the
sc_signal_out_if interface. The sc_clock_sw class encloses two software events, that is, two
instances of the uc_event class, and an additional software thread declared and instanced

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 30 of 118

through the UC_THREAD macro, which was already used in previous releases of SWGen for
the porting and support of untimed process implementation as software threads.

The two software events of the sc_clock_sw class represent the positive and negative global
software events. These events are periodically notified by the internal thread in an alternative
and consecutive manner. Following the actual implementation of the inner thread of the
sc_clock_sw class is shown.

void sc_clock_sw::clock_proc() {

 // wait for the initial start time

 wait(start_time_v,start_time_tu);

 while(true) {

 if(clock_value) {

 clock_value = false; //toggle value

 // send positive event to trigger computation

 sw_pos_event.notify();

 wait(posedge_time_v,posedge_time_tu);

 printf("Posedge period of SW clock consumed.\n");

 } else {

 clock_value = true; //toggle value

 // send negative event to trigger SW sc_signal update

 sw_neg_event.notify();

 wait(negedge_time_v,negedge_time_tu);

 printf("Negedge period of SW clock consumed.\n");

 }

}

As can be seen, the sc_clock_sw class also provides a software implementation for the
specification of an initial time and a duty cycle for the software clock.

Such software implementation makes calls to the wait(double, sc_time_unit) function. This is
a software implementation facility, syntactically similar to its SystemC counterpart, and
already present in the SWGen v1.1 library, which wraps the RTOS calls for delaying
(blocking for a given time) the calling process. This implementation had a limit on the
resolution of the delay which came from the target platform and its tick timer. Therefore, the
resolution of the sc_clock_sw class is obviously affected by this resolution. The sc_clock_sw
class can be instanced once per namespace.

(sc_clock_sw)

sw_pos_event
(uc_event)

sc_signal_out_if<bool>

sw_neg_event
(uc_event)

clock_proc
(UC_THREAD)

uc_module

Figure 12. The sc_clock_sw software implementation class.

Since the user software threads implementing SystemC clocked threads are inside uc_module
instances, the SW thread has to be triggered by a notification traversing a module structure.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 31 of 118

Figure 13 reflects the basic scheme to make the association between the clocked process and
the software positive event. The UC_THREAD process gets blocked in a wait() statement.
There it waits on a notification on the software positive event of the software clock,
previously associated through a binding between the clok input port and the clock object and a
sensitive statement associated to the clock input port.

sysclk (sc_clock_sw)

sensitive

(sc_in<bool>)

wait()
UC_THREAD

sw_pos_event

in_clk

(uc_sensitive)

(uc_module)

sc_signal_out_if<bool>

Figure 13. The wait() statement blocks the process till a notification on the software positive event of the

software clock happens.

A sensitive object of uc_sensitive class is instanced within the current uc_module instance
wrapping the thread. As with the SW implementation of untimed specifications, the
uc_module class is in charge of keeping the module ambit in the SW implementation, but
removing most of the stuff included in the sc_module specification class.

The sensitive object keeps a reference to an uc_event reference enclosed by the port passed to
the sensitive instance at construction time (specifically, at the construction of the uc_module
class) through the “<<” operator (implemented by the uc_sensitive class). There is only one
sensitive object per module. Therefore, SWGen v1.2 currently associates a single triggering
event to a module and, thus, to all the clocked software threads within the uc_module.

The reference within the clock port is not correctly filled till the binding takes place. SWGen
currently supports binding of port to signal interface and to a parent port. This also applies for
the ports connected to sc_signal channels.

SWGen provides an eSW implementation for the sc_signal channel class relying on the
sc_signal_SS class and on the cs_exec_context class.

 sc_signal_SS

sysclk (sc_clock_sw)

sw_neg_event

update()

current scheduled

sc_signal_out_if<T1> sc_signal_in_if<T1>

cs_execution_context
(cs_exec_context)

sc_signal_SS

update()

current scheduled

sc_signal_out_if<T2> sc_signal_in_if<T2>

update_signals_proc

register_sw_signal()

sc_signal_out_if<bool>

Figure 14. The sc_signal_SS class provides a SW implementation for the sc_signal channel.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 32 of 118

The sc_signal_SS class provides an efficient implementation of the SystemC signal interfaces,
in the sense that it provides a double value (current and scheduled) semantic without requiring
a dedicated software process per channel for updating the current value with the scheduled
value. For it, the SWGen library instances the cs_execution_context global object, of
cs_exec_context class. This object is in charge of registering every sc_signal_SS instance and
communicates with the software clock. The cs_execution_context has an internal process
(which, with the software clock process, adds to the mapped clocked processes), called
update_signals_proc. This process is resumed every time the software clock makes a
notification to the software negative event, and then makes, for each sc_signal_SS instance, a
call to a stub method called update. Such method updates the current value with the
scheduled value.

Summarizing, the SWGen CS software implementation alternates signal updates with clocked-
process computation. Figure 15 shows how SWGen maps the SystemC time (a simulated
time) handling of the clocked synchronous specification on the actual time of the eSW
implementation. The start of SystemC clock cycles is mapped to software positive events of
the software clock. Software negative events are used for software signal updates. Notice that,
at sytem-level, such updates where took place at each delta cycle (specifically at its update
phase) of the SystemC simulation.

δ1 δ2 δ3 δ4
SystemC time (t)

δ1 … δ1 δ2 δ3 … …

t1 t2 t3 t4

…

actual time (t)

t1 t2 t3 t4

sc_signal_SS updates
(at sw negative events)

timer ticks

sc_clock positive events …

eSW IMPLEMENTATION

sc_clock_sw positive events

sc_signal updates

1st cycle 2nd cycle 3rd cycle …

Figure 15. SWGen mapping of the Simulated (SystemC) time of a clocked synchronous specification to

actual time on its corresponding eSW implementation.

6.2.3 POSIX port

SWGen v1.2 currently provides a port of the CS implementation for the POSIX-API. The
structured implementation of the SWGen library, and in particular, of its CS extension,
explained in section 6.2.2, lets comprise the RTOS-API specific calls in few functions. This
facilitates the porting for any embedded RTOS-API. Moreover, a part of the required porting
for the CS MoC is common to the untimed MoC support. For instance, the UC_THREAD
macro and the wait(double, sc_time_unit) macros are required for untimed MoCs and their
porting is explained in other SWGen related documentation [FHSV03] [Herr09].

The new software implementation facilities involving RTOS-API specific system calls
(syscalls) for the support of the CS MoC are actually the uc_event class and the related
wait(uc_event) function. The wait implementation must let block the process, whose
resumption must be conditioned to a notification. In time, the uc_event notification must be
broadcasted to every pending process. That is, it must support the triggering of two or more

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 33 of 118

processes waiting on the same software event. The solution provided for the POSIX port is
based on a POSIX mutex and a POSIX condition variable. The uc_event class just declares
and instances a mutex and a condition variable. Then, the immediate notification of the
uc_event class is implemented as follows:

void uc_event::notify() {

 pthread_mutex_lock(&event_mutex);

 // printf("SWGen: Notification from SW event.\n");
 pthread_cond_broadcast(&event_cond);

 pthread_mutex_unlock(&event_mutex);

}

In POSIX, the calling process can use the pthread_cond_broadcast syscall to resume several
processes. A POSIX thread waiting on the uc_event notification made the wait(uc_event) call,
which encloses the the following “symmetric” code:

void wait(uc_event &e) {

 pthread_mutex_lock(&(e.event_mutex));

 pthread_cond_wait(&(e.event_cond), &(e.event_mutex));

 // printf("SWGen: Notification in SW event received.\n");

 pthread_mutex_unlock(&(e.event_mutex));

}

Other implementation could be likely possible. For instance, one immediate one could be
based on POSIX signals and their related handlers. Such an implementation has been
considered to be likely less stable. However, future work could study such alternative
implementations and give more details to deduce if a specific solution is optimum in any case
or a software synthesis process should decide the optimum solution for each target.

6.2.4 Contribution in the field of eSW generation from CS specifications

Several works have faced the implementation of synchronous software. For it, synchronous
languages like Signal, Lustre or Esterel [BoSi91], and optimized compilers able to check the
tight conditions of the synchronous models coded have been developed.

A main difference of this work with respect to those works is that it starts from a system-level
specification. The starting point is not only an abstract software description, which could be
made in any of the previously mentioned synchronous languages, but a system-level model
oriented to a HW/SW implementation. A main feature of the system-level HetSC model
described in section 6.2.1 is that it has an immediate eSW implementation, while its HW
refinement is close to the SystemC synthesizable models defined in [OSCI05]. Checks related
to this synchronous domain are left for the system-level design activities like profiling and
DSE, which the system-level SystemC specification enable, instead being a responsibility of
the SWGen library, which focus on efficient implementation.

More specifically, other novelty of this work is related to the software generation from a
synchronous model written in SystemC. Some works have analized the similarities between
SystemC and synchronous languages [BrKl07]. However, up to now, only a close related
work, developed by Virginia Tech (VT) has been found [SAB02][Sir02]. The following
paragraphs remark the distinctions and contributions with regard to this work.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 34 of 118

VT approach [SAB02][Sir02] supports embedded software generation from SystemC clocked
synchronous models. In this work, C and C++ implementations of the SystemC clocked
synchronous specification was provided by means of a substitution of the SystemC host native
kernel by an ad-hoc scheduler, targeted to the implementation platform and in charge of
implementing the evaluation-update semantic of the sc_signal channels.

However, there are main differences between the VT approach and the approach proposed
here. First of all, the CS eSW implementation of SWGen is just a part of an overall
methodology which aims the eSW implementation of a heterogeneous specification, including
several domains (i.e untimed and synchronous domains, which in time can include several
MoCs). Indeed, previous SWGen releases have cover first the implementation of untimed
SystemC specifications, a common and widespread modelling paradigm in concurrent
software. With this work, SWGen is extended to cover clocked synchronous models, another
important part of the synchronous approach to software (especially in reactive and real-time
applications). However, VT approach is bound to the clocked-synchronous domain, without
covering software implementation of untimed specification in SystemC.

Another difference of the SWGen approach to CS domain, with regard to the VT approach, is
that it relies on the services of an embedded RTOS for solving the implementation issues
which cannot be covered by the C/C++ language, as it happened for the untimed
specifications (Figure 16a).

 SystemC

SW
untimed

HW

System-Level

CS

Embedded RTOS

untimed CS HetSC

SWGen v1.2

SWGen v1.1

SystemC

SW
untimed

HW

System-Level

CS

Embedded
RTOS

untimed CS HetSC

SWGen v1.1

VT

Ad-hoc
scheduler

a) b)

VT approach

?

Figure 16. SWGen implementation of Clocked-Synchronous SystemC specifications relies on an eRTOS

(a) instead of on a methodology-specific scheduler (b).

For instance, in the implementation of untimed MoCs, the concurrency and synchronization
services of the eRTOS were used for implementing process networks specified in SystemC
under the rules of the HetSC methodology. Moreover, software implementation of timed
synchronization was also based on RTOS system calls. Now, in order to provide an eSW
implementation for CS specifications, this approach is kept. The services required for
implementing a clocked synchronization/trigger of threads and a signal-based communication
semantic can use again the services of the eRTOS, instead relaying on an ad-hoc scheduler, as
it happens in the VT approach (Figure 16b). There were advantages in relying on an eRTOS,
like relaying on the own robustness and support of commercial and/or well-known eRTOS
and the possibility of exchanging the RTOS for different implementation targets while
generating from the same SystemC-based specification.

Therefore, in the SWGen approach, shown in Figure 16a, the implementation of multidomain
specifications, composed of untimed and synchronous parts, rely on the same basis of a single
scheduler implemented by the embedded RTOS, which eases the coherence of this link. This

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 35 of 118

is contrasted with the possibility of merging untimed targeting supported by SWGen1.1 library
with the VT approach (Figure 16b).

Also regarding this unifying line, the SWGen approach and the VT approach are distinct in
several syntactical issues. A first one is that SWGen approach to CS is currently based on the
SC_THREAD and the wait() statement (while VT approach uses the SC_CTHREAD). The
SWGen approach has the advantage of ensuring the support of the same type and general type
of process (SC_THREAD) which is suitable and can be used for both types of specifications,
untimed and synchronous. Previous releases of SWGen discarded the SC_CTHREAD since it
was not the most suitable and immediate type of process for the support of untimed software
models. Therefore, by guaranteeing the usage of the same type of process, the user has a
notion or more homogeneity in the usage of the SystemC language and of its related
implementation, while being able to specify parts under different domains1.

Another difference with respect to the VT approach has to do with the communication among
processes. Figure 17 shows that the VT approach relies on the usage of sc_signal channels for
synchronization and shared variables for data transfer.

SC_MODULE

DATA_READY

(sc_signal)

SC_MODULE

ACK (sc_signal)

int a; int b;

SC_CTHREAD; SC_CTHREAD;

CLK (sc_signal)

int shared;

Figure 17. In the VT CS specification Communication is solved through sc_signal channels and shared

variables.

In contrast, the HetSC specification methodology assumes that both, synchronization and data
transfer are both intrinsic parts of the communication, and are responsibilities reserved for the
SystemC channels. In the CS HetSC specification, such channel is the sc_signal. The
specification structure proposed in section 6.2.1 holds, therefore, a basic general rule of the
General Specification Methodology of HetSC [HUM08], consisting in explicitly making
communications by means of channels, and only through channels. This keeps the coherence
and some homogeneity on the specification methodology.

6.3 Other SW extensions

6.3.1 Extension of SWGen for eSW generation of eSW Synchronous Reactive
Models

This section explains the SWGen extension proposed for the implementation of the SR
domain. However, a SWGen port (i.e. POSIX) has not been implemented yet.

The HetSC documentation, available in [HUM08], specifically in the Annexe B.5, defines the
rules and guidelines for specification of SystemC models under the SR domain. These
guidelines describe how to specify reactive chains composed of generator processes (GP) and
reactive processes (RP). Figure 18 provides a HetSC graphical representation of a reactive

1 Additionally, the deprecation of clocked processes (SC_CTHREAD) has been under discussion during the last
years, being other motivation for the usage of SC_THREADs in SWGen. Up to date although the
SC_CTHREAD appears in the SystemC LRM [IEEE06], some of its related constructs have been deprecated.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 36 of 118

chain. Such specification is based on SC_THREAD processes and the uc_SR HetSC channel
instance, which keeps some semantic similarities with the standard sc_buffer channel.

uc_SR<char>

write
event/written

read

GP1
GC

RP1 RP2

RC 1 RC 2

uc_SR<int> uc_SR<>

RP3

Figure 18. Reactive chain in a HetSC SR specification.

As can be appreciated, a SR HetSC specification does not explicitly specifies a clock, but
actually any uc_SR channel instance is able to trigger any reactive process associated to it.
This triggering happens whenever an uc_SR channel instance is written. Reactive processes
(RP) can be triggered by one or more uc_SR channel instances and a single uc_SR channel
instance can trigger several reactive processes (thus several reactive chains). The SR SystemC
specification handled the concept of simultaneity by means of time stamps and delta cycles.
All the computation on the reactive chain is considered to be synchronous whenever it takes
place within the same time stamp, however, delta cycles let apply a causal reaction among the
processes which compose the reactive chain.

The SWGen implementation is based on a global implicit software clock. The period of this
clock is defined as configuration parameter of the SWGen library. The global implicit
software clock is implicit because it has no kind of direct correspondence with a SystemC or
HetSC specification facility. Indeed, the SR model of HetSC handles no kind of explicit clock.
The period of the global implicit software clock fixes the resolution which the software
implementation uses to consider two write accesses of a uc_SR channel instance simultaneous
(that is, synchronous). Equivalently, it determines the steps for computing reactive
computations. Indeed, reactive processes (RPs) are implemented as software threads which
can block on wait(uc_event) statements, in a similar way as it was done with the CS software
implementation. However, these wait(uc_event) statements of the RPs are sensitive to the
global implicit software event. Thus, as can be seen, the software implicit clock defines a set
of implicit cycles which somehow fulfil the role of the delta cycle in the SystemC
implementation of SR specifications in HetSC. Because of that, they are named software

deltas (sw-δ). These mapping of SystemC time handling of SR specifications on actual time
of the software implementation has been represented in Figure 19. In the SWGen

implementation, the sensitivity list of the RPs fixes the set of uc_SR_SS instances which have
to be checked for determining which functionality of the reactive process has to be computed
(as appendix B.5 fixes, the functionality depends on the trigger combination).

The HetSC generator processes (GPs) of the SR model can and have to call wait on time
statements in order to separate and fix the specific slots (identified by specific SystemC time
stamps). Indeed, GPs are the autonomous computations which fix when slots are given within
the simulated SystemC time. The software implementation of these generator processes is
already supported by SWGen, since GPs are implemented as “untimed” software threads and
the wait-on-time statements already had a basic support on the SWGen library.

Notice that, as Figure 19 represents, the software delta is in general an integer multiple of the
tick timer and it is periodic. However, the slots do not have to happen as times being an
integer multiple of the global implicit software clock period (that is, of the software delta
period). In any case, the SWGen implementation (as any other feasible implementation)
provides an actual time dimension to the reactive computation. Therefore, it is necessary to

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 37 of 118

guarantee that the number of software delta cycles needed to stabilize the computation fit
within the actual time between consecutive slots. In this sense, the HetSC library provides the
activity analysis, which provides data about the number of delta reactions which a reactive
chain can take before stabilization. In the software implementation there will be a trade-off in

the selection the sw-δ. A bigger resolution (lower sw-δ period) can admit more software
deltas and more chance to get the stabilization for a given reaction. However, it requires
shorter computation times to the processes of the reactive chain and can lead to an inefficient
figure of context changes.

δ1 δ2 δ3 δ4
SystemC time (t)

δ1 … δ1 δ2 δ3 … …

t1 t2 t3 t4

…

actual time (t)

t1 t2 t3 t4

global implicit

software event

timer ticks

slot events

…

eSW IMPLEMENTATION

slot events

Reactive
Computations

1st slot 2nd slot 3rd slot …

…

…

software deltas

Figure 19. SWGen mapping of the Simulated (SystemC) time of a synchronous reactive specification to

actual time on its corresponding eSW implementation.

6.3.2 Generation and Publication of a User Manual

A first version of the SWGen user manual will be now available on the SWGen website
[SWG08]. The main points included by this manual are:

• Fundamentals and main purpose of the SWGen methodology.

• Installation instructions the SWGen library.

• Instructions to run the available examples.

• Explain the current SWGen generation subset.

• Instructions and clues to setup some of the supported target platforms on the native
host machine.

6.3.3 Additional Port to µC/OS-II embedded RTOS API.

The last release of SWGen has been provoded with a port (currently covering untimed
domain) for the µC/OS-II [Lab02] API. This demonstrates that SWGen technology is able to
target a wide range of embedded RTOS (through its related APIS) considering the typical
ranges of the size of their footprint. That is, SWGen can range from small sized eOS like

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 38 of 118

µC/OS-II to big sized eOS like Embedded Linux distributions (ELinux). In the middle, it can
target medium sized embedded RTOS like eCos [Mas03].

E RTOS

SWGen

Cyg API

POSIX

Target Platform

µC/OS-II API +

+

+
Xilinx-V5
µblaze

Figure 20. Support of a theµC/OS-II RTOS API has been added to the SWGen library.

Another advantage of the port to the µC/OS-II API is that it facilitates the connection with the
other implementation technologies involved in ANDRES and let fit the application of the
SWGen technology in the development environments closer to the needs of the industrial
partners. This should in time facilitate the development of the ANDRES industrial
demonstrators. Figure 21 shows a scheme sent to one of the industrial partners (DS2) about
the role that the SWGen library can play in the development of their industrial demonstrator.

sc_main

Controller

(HetSC)

Rest of PLC

 channel model
(OSSS+R

 + SystemC-AMS)
ANDRES

spec.
framework

.b in

.exe

SWGen

g++

uCosII port

SW partition

µP

x-g++

uCosII

.bin

uCosII

Fossy
AMS impl.

flow

DRHW AHW
Linux port

(1) Functional and (2)

Performance verification in
the native development
platform

.bin

uCosII

SCOPE

Figure 21. SWGen flow in the context of the DS2 use case in ANDRES.

The µC/OS-II RTOS is familiar in their development environment. Additionally, µC/OS-II
counts with a Xilinx-microblaze port which can be easily targeted to a Xilinx-based FPGA
with dynamic partial reconfiguration capabilities, i.e. as the Virtex V–based platform
represented in Figure 20 and sketched in Figure 21 with dashed lines. This has the additional
advantage that such platforms are targets currently supported by the OFFIS Fossy tool
[D24B], able to target DRHW from OSSS+R code.

Figure 21 also shows some of the possibilities enabled by SWGen for the progressive
validation of the generated software before aiming the target platform. Currently, there are
µCos-II ports for Linux targets which let check µCos-II on host machines with a Linux
installation. An issue is that this port is for 32 bits, however, some industrial partners
currently use 64bits clusters. In order to solve it, SWGen makefiles for µCOS-II-Linux target
are provided and the documentation provides now guidelines to adapt, install and use the
‘Esslingen port’, a Linux port to µC/OS-II available in [UCP08], for 64bits host machines.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 39 of 118

Another verification possibility when the eSW generation is targeted to a POSIX-API is to
pass the resulting code to SCoPE [SCo08], a performance analysis tool developed by the
GIM-UC.

6.3.4 Improved handling of Makefiles

The handling of Makefiles has been improved. Originally, in the initial version of SWGen, a
big and complicated Makefile was handled. Now in SWGen v1.2, Makefiles have been split in
a platform basis. These means that a single Makefile serve to keep specific building details of
eSW for a specific HW/SW platform, fixing the RTOS API (POSIX, µCOS-II) and software
architecture (like ARM, native, etc).

Then, for instance, in order to configure the SWGen library and generate an embedded
software application for a target platform based on ARM and the ELinux eOS, specific
Makefile.arm-linux files are available. If the generation is targeted to a platform based on the
µblaze microprocessor and the µC/OS-II RTOS, then, the library provides specific
Makefile.ublaze-ucosii files for it. If, for instance, the user wants to do a first check of
generation for the µC/OS-II target over the host (Linux-based) native platform, specific
Makefile.host-µcosii files are available. The Makefile.host-posix lets check SWGen generation
for POSIX targets in any Linux based host platform supporting pthread library.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 40 of 118

7. Adaptive Software

During the last decades, software programming has evolved to cover more abstract and
powerful paradigms. Assembly languages left pass to high-level languages. Since1970s,
Structured Programming become the usual way of building software, overcoming problems
caused by absolute branching. In the 80s, on Object Orientation (OO), incorporated advanced
concepts such as inheritance, overloading and polymorphism, enabling a more productive and
abstract approach. In OO Programming was created, software is split up into separate classes
that are designed to have minimal interaction between them. It makes easier to reorganize the
code when the specification changes; however, each change still requires programmer
intervention, and thus, an additional cost of money and time [AS08].

A new approach is Adaptive Programming, which addressed the problem which arises when a
piece of software has to be reused for new purposes and/or situations it was not originally
designed for. Initially, this could be handled by a static adaptation, which automatically solves
at the compilation phase, the code which has to be in charge of achieving the proposed goals.
However, if the code is working in a changing environment and/or with changing goals,
software has to adapt for yielding such changing goals in an optimum way, without the
chance of rewriting the program. Therefore, Adaptive Software is about representing the
actions that can be taken, the goals that the user is trying to achieve and the way in which the
program automatically manages change, selecting the right actions under goals consideration
and everything during the run-time without the intervention of a programmer.. Summarizing,
adaptive software uses available information about changes in its environment to improve its
behaviour within a running program, which involves dynamic adaptation.

There are several lines of work related to the development of adaptive software, in most of the
cases, not totally independent, but, to the contrary, rather complementary.

A first line is the proposal of new software architectures. These works propose new sets of
specific software components and define their interaction in a way which makes architecture
for adaptation more explicit. These approaches break in some sense with some of the
assumptions done in previous approaches, like OO and structured programming. For instance,
the adaptive functionality cannot be seen like a black-box, as it happens with a function or a
class. That is, encapsulating such adaptive functionality in a class or a function is not longer
sufficient. In an architecture of adaptive software, the different ways/algorithms/solutions
which can solve a functionality have to be somehow apparent, as well as the goals, and the
criteria to enable the automatic decision of which solution is dynamically adopted.

A specific example can be found in [CHS01], which proposes an architecture for modelling
adaptive distributed software. A service of a distributed operative system (or of a middleware
layer) is spread among different hosts by means of a set of basic components called adaptive
components or ACs. Each host of the distributed system will run an AC. Figure 22 shows the
internal structure of the AC, which consists of two different types of modules: a component
adaptor module (CAM) and several adaptation-aware algorithm modules (AAMs). Each
AAM provides a different algorithm that implements the functionality of the component,
while the CAM controls the component’s adaptive behaviour. When it perceives that any
other AAM is a better fit for the current requirements, it initiates the adaptation, replacing
current AAM. In this way, either using an AAM or using another one, the system achieves
different functionalities and/or performances for the same AC.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 41 of 118

Figure 22. Structure of an adaptive component (AC) (taken from[CHS01]) .

There are other proposals of adaptive software architectures. [SCO02] proposes an
architecture based on Containment Units (CU). DAS (dynamic adaptable software) [AW98]
is another approach (shown in Figure2) which describes a meta-level architecture for
constructing adaptive software. It is based on environmental objects which represent the
actual runtime environment. They have different states, each one representing a different set
of features of the runtime environment. Each state is, in time, associated to a set of methods.
Event objects monitor state changes of environmental objects. When they detect the
occurrences of the changes, the call to the appropriate methods is done.

Figure 23. Structure of a DAS model.

Another important line of work on adaptive software is the development of dynamic
programming languages. In some cases, these languages are tightly related to the development
of the previously mentioned architectures for adaptive software. For example, LEAD++
[AW98] is an object-oriented language used to describe the DAS architecture. In [SCO02],
Little-JIL language [LJIL09] is used, enabling the application of static analysis to obtain
assurances that the Containment Units can be expected to demonstrate the robustness for
which they were designed.

In LEAD++ the basic mechanism for dynamic adaptability is called adaptable procedure. An
adaptable procedure is a special kind of generic function whose internal computation is
selected based upon the state of its runtime environment. In [AW98], LEAD++ was
implemented as a kind of Java pre-processor composed of a translator and a library of Java
classes.

Little-JIL is language that can be used to define the coordination of multiple autonomous
agents, describing the control and data flow among those agents and moreover, their usage of
available resources during the performance of a task. Such definition is called a process
program, and provides different ways of achieving the task completion. Each way will have

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 42 of 118

different requirements of resources and agent capabilities. Little-JIL enable the definition of
Pre- and post-requisites, which are used to dynamically verify that the process is being
applied correctly, and the modelling of resources, which are reserved and locked during the
execution of a process.

There are other languages such as CLOS [Son88], an extension of LISP for Object
Orientation, or Dylan [Dyl09]. CLOS stands for Common Lisp Object System, and it is an
extension for OO programming of the LISP language. CLOS is dynamic, which means that
both, the contents and the structure of CLOS objects can be modified at runtime. The
definition of CLOS classes can be dynamically changed (during run-time), even when there
are already running instances of the changed or “adapted” class. Moreover, a special operator

(change-class) enables the changing of the class membership of a given instance. CLOS
also enables the addition, redefinition and removal of methods at runtime. Similarly, in Dylan,
a piece of a program which is not sealed (that is, explicitly locked to be invariant) can be
extended at run time or by additional libraries. Specifically, a running program can add a
method to an existing class without accessing to the original source code, or needing its
recompilation. Moreover, a library of introspective functions supports the run time
examination of objects, including classes and functions. This enables that a Dylan program
can indeed debug another Dylan Program.

Agent technology is another key line on the creation of adaptive software. An agent is an
autonomous component that can perceive part of the environment and it can react, taking
some actions [Net08]. Normally, these actions are not the whole functionality the adaptive
system is in charge, but they are in charge of triggering the suitable functionality at a given
moment. Therefore, agents are incrusted on a scheme of self-adaptive software, where they
are light-weighted computation elements, however also the main responsible for sensing the
environment, deciding about the suitability of the current behaviour of the system, and about
its adaptation if proceeds. As it happened with the relation of software architectures and
languages, agents’ technology is closely related to these work lines. For instance, a language
like Little –JIL, previously mentioned, is based on agents.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 43 of 118

8. Adaptive Software in ANDRES

8.1 Relation to ANDRES and Contribution

The analysis done in chapter 7 about the relative recent paradigm of adaptive programming,
will serve to first extract some conclusions about what must be understood or taken in
common when talking about adaptive software, to later fix which the contributions of
ANDRES to adaptive software are.

From the analysis of chapter 7, it seems clear that, when talking about adaptive software run-
time adaptation is self-understood, without need of re-compilation. This is coherent with the
abstract concept of adaptivity handled in ANDRES and its implementation, for instance, in
the hardware domain, with the parallel concept of dynamic partial reconfiguration.

When talking about adaptive software, it seems also apparent a specific architecture of self-
adaptive system, where some blocks should be able to encapsulate alternative solutions
(adaptable computations), while other blocks (agents) are in charge of sensing the
environment and adapt computations. As will be seen in section 8.2, this is in much coherent
with some of the basic abstract blocks/concepts developed in ANDRES, which serve to build
such an adaptive architecture.

However, as well as these common points with the existing work lines in a pure software
context, this work will present some distinguishing aspects which provide a new perspective
for the specification of adaptive software. These aspects are summarized in the following
points, to be later explained in more detail:

1. Orientation to AHES (Adaptive Heterogeneous Embedded Systems)

2. Adaptivity modelled at the System-Level, instead directly at the software domain.

3. Adaptivity in SystemC.

4. Automatic generation of Application-Level Adaptive Software.

5. Under a Formal Framework supporting Heterogeneity and Adaptivity.

A first main distinction is that the work done here is oriented to the system-level specification
of Adaptive HW/SW Embedded Systems, equivalently, Adaptive Heterogeneous Embedded
Systems (AHES). This contrasts with works reminded in chapter 7, which move more in a
pure software domain, independently whether such works address software as complex and
needed of computation resources as the distributed software of [CHS01].

This orientation to AHES, has direct involvements on the abstraction-level which is
considered in the capture of adaptive objects and structures. The design methodologies of
embedded systems have moved towards what is called system-level specification, instead of
facing a direct capture of the software program. In this line, the structures for adaptivity
proposed here are handled at the system-level, thus placed at a more abstract plane than the
software domain. For instance, the adaptive specification structures dealt here will not make
any assumption or let any dealing of scheduling policies, since this is usually considered a
software implementation detail. In one hand this can be perceived as a disadvantage by a
software programmer, which looses the capability of, for instance, use or assume a given
scheduling policy to guarantee that a given adaptation will take place at certain moment or at

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 44 of 118

a given rate. However, from the perspective of embedded system specification, this has the
necessary advantage of enabling the production of a model which can be more easily mapped
to both software and hardware. This is reflected in Figure 24.

Adaptive Object

SystemC

SWGen

SW
SW Adaptive

Object

HW Adaptive
Object

HW
refinement

HW

System-Level

Figure 24. This work addresses the specification of SW Adaptive Objects in a system-level in SystemC.

In case a concurrent specification of the adaptive system where directly code in software
assuming a given scheduling policy, then if the design process decides to move it to hardware,
it is necessary to remove from the software specification such scheduling information (which
can be interpreted as moving up towards the system-level specification detail), to later go
down again towards the hardware domain, which usually need to work with real concurrency,
thus without assuming a specific sequencing or order fixed by a scheduling policy. This has
been represented with the dashed line. However, if the adaptive specification facilities are
captured at a system-level, not only system-level verification is possible, but the
implementation flows to SW and HW only require the addition of the information and details
proper of each domain. This has been represented with the continuous lines.

Again, in a close relationship with the previous points, the work done here is focused on
SystemC, which contrasts with the usage of any of the Dynamic Programming Languages
mentioned in chapter 7. Being a C++ extension, SystemC does not provide the advanced
features which are already inherent to Dynamic Programming Languages. However, SystemC
is a more suitable language for the specification of embedded systems for several reasons: like
being a system-level language; having a syntax closer to embedded system designers; being
an standard language; and counting with a set of extensions (TLM, SystemC-AMS, OSSS+R,
HetSC, etc) for supporting the different domains involved in the design of an embedded
systems. This makes interesting exploring possibilities, as this work does, and eventually the
limits of SystemC for specifying adaptivity, and more specifically, adaptive software.

This approach requires and supports (by means of SWGen) an automatic software
implementation flow directly from the system-level adaptive specification facilities, while
such specification facilities still let further and progressive refinement to other domains
different from software, like digital or analog hardware. The generated software should be
situated at an application-level (see Figure 25), which contrasts with some works reviewed in
chapter 7, like [CHS01], which addresses the modelling of adaptive architectures at the
Middleware and at the RTOS levels.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 45 of 118

HetSC

SystemC

OSSS+R SystemC-AMS

AHW DRHW

Fossy

SWGen

PbHW

SW

RTOS-API

HAL

RTOS
Drivers

Application

HdS

Middleware

Figure 25. This work focuses on the generation of adaptive software at the application level.

Last, but not least, this approach is based in a metamodel (ForSyDe), which provides a formal
framework for supporting both heterogeneity, as well as concepts for Adaptivity. ForSyDe
supports heterogeneity by metamodelling up to four basic models of computation (untimed
synchronous, discrete and continuous). This is necessary for removing ambiguities in the
interactions among the different parts which compose the specification of a whole actual
embedded system, which very likely incorporate software, digital and analog hardware.
Additionally, ForSyDe has been extended in ANDRES for supporting adaptivity. This
extension is briefly reviewed in the next section for the reader convenience, while more
details can be found in [D11A]. More ForSyDe documentation about support of heterogeneity
is available in [Jan05] [SaJa04]. As will be seen, the proposal done here is based on these
formal concepts for different computation domains and types of adaptation possibilities
comprised by the ForSyDe metamodel.

8.2 Formalization of Adaptivity: Adaptive Processes

In [D11A] (section 1.5), the general term Abstract Adaptive Object (AAO) reflected the
notion of an object with some kind of adaptivity capability, where its adaptation mechanism is
undefined. The different kind of adaptive capabilities and of adaptation mechanisms can
define then a wide set of Adaptive Objects (AO).

From this general perception of the AAO, the chapter 5 of [D11A] develops a more specific
concept, the Adaptive Process (AP), which extends ForSyDe for modelling of adaptivity. The
AP presents an adaptation signal, additional to the rest of input signals, to change the
behaviour of the Adaptive Process.

 i1

in

Adaptation

signal

o ppa

AP

Figure 26. ForSyDe Adaptive Process.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 46 of 118

From this general concept, [D11A] defines four types of APs, mostly distinguished by the
information transferred through the adaptation signal, that is what is adapted. Since it is
convenient for the rest of the discussion, in HetSC these metamodelling concepts are shortly
named parameter-based Adaptive Process (paAP), mode-based Adaptive Process (mAP),
function-based Adaptive Process (fAP) and process-based Adaptive Process (prAP).

i1

in

spa

o ppa

a)

parameter

adaptation
input

i1

in

sm

o pm

b)

i1

in

sf

o Pf

c)

i1

in

spr

o ppr

i1

in

Spr

o pa

e)

pc

d)

Figure 27. Types of ForSyDe Adaptive Processes.

A fifth category of AP was introduced in [D11A], the self-adaptive Process (sAP). The sAP
approximates the idea of adaptivity in the software world. In some sense, process pc of Figure
27 reflects the software agent, which, as explained in chapter 7, is an autonomous entity
which decides the adaptation the AP pa must carry out. In the ForSyDe case, the agent process
pc, samples the inputs and the outputs delivered by AP. Moreover, in a software context, pa
and pc inputs can be independent, since agent can sample environment inputs which differ
from the inputs of the adapted software.

In any case, ForSyDe metamodel is able to capture the sAP as a process network composed of
any of the four basic types of APs and the agent process. Therefore, the knowledge of how to
model those four types of APs in SystemC, and how to implement them as embedded
software (eSW), is a basic need which is addressed in the following chapters.

Finally, another important consideration is the typology of APs of Figure 27 is orthogonal to
the fact that ForSyDe covers several domains (or MoCs), namely untimed, synchronous,
discrete time, and continuous (recently incorporated in ANDRES). Regarding to this work,
the former two domains are considered to have some impact in software modelling.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 47 of 118

9. Software Implementation of Adaptive Processes

9.1 Fundamentals

In this chapter gives an idea about how adaptive processes could be directly described in an
embedded software application. It is a sketch of how an eSW programmer could manually
capture the formal APs defined by ForSyDe.

Such software implementation of the AP depends on the software development platform,
characterized by the implementation language, type of RTOS API (if there is RTOS), etc. For
instance, if a concurrent specification is finally implemented in C, without RTOS and without
support of concurrency, each AP of the specification has to become a sequential portion of
code.

Specifically, in this chapter, it will be assumed that the platform and its related eSW
development kit (SDK) includes a C/C++ cross-compiler, and an embedded RTOS with
support of multithreading and a generic C-API. This will make easier to later on understand
that the eSW generated by SWGen from the HetSC APs explained in chapter 10 will
correspond with the eSW implementation based on the formal ForSyDe APs, introduced in
this chapter.

The eSW implementation of the AP also depends on the MoC employed in the specification
too. In this chapter, it will be first shown for untimed MoCs since software is often modelled
through these MoCs.

Under these assumptions, it can be reasonably assumed that the Adaptive Process will be
implemented as a static thread (since the AP in ForSyDe is static). By static thread is
understood that the thread is created once, before the system starts to run, and remains till the
end of execution. This involves a conceptualization of two phases in the execution of the
software implementation which is not rare in many applications. In an initialization phase
(which would correspond to the elaboration phase of the SystemC simulation) threads, among
other data structures, are declared and instanced. Later on, threads are executed (which would
correspond to the simulation phase of the SystemC simulation).

v1

i1
......

vn

AP scope

SW

thread

Inter-thread

communication

Input variables

a1
......

an
Adaptation variables

o1 on

output variables

iN

a

root function

o

 o = f(v1,..vn, a1,,an)

Figure 28. SW implementation of an adaptive process

The thread has an associated C/C++ function, called root function in Figure 28. The root
function contains C/C++ sequential code which deterministically relates the input data with
the output data. Internally, the root function can call other C/C++ functions. The root function
has neither input nor output parameters and it has a biunivoque association to the static
thread. The root function has, in general, an inner infinite loop (root loop) which is in charge
of making the process to infinitely compute. The thread communicates with other threads

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 48 of 118

through inter-thread communications system calls, which take the role of input and outputs of
the adaptive process implementation. Additionally, there can be a set of related input and
output variables whenever a local storage of input data and/or output data is needed. For
instance, an input variable is necessary when a token is read more than once in the evaluation
of an output token and the read system call is consuming. An input variable is also necessary
when it is going to be read in a later evaluation (in this case, it becomes a state variable). Input
and output variables are not always necessary and can be overridden. Moreover, in some
cases, the output system call can take as a parameter and input system call. However, a
functionally equivalent implementation with input and output variables is always possible.
Because of this, and for discussion simplicity, input and output variables will be assumed.

The process computation (evaluation) is, in general, a finite set of functional relationships
established between each computed output (transferred out of the adaptive process through an
output inter-thread communication system call) and its related inputs (read by the adaptive
process through input inter-thread communication system calls).

The AP can have a state. For the discussion, it is reasonable to assume that in its SW
implementation the state variables will be part of the thread scope. That is, that these variables
are local to the root function. This approach it is not always practical. A reason is that
sometimes state variables are too big to be part of the local scope of the root function, due to
stack limits. However, the simplification done is still valid for the analysis if the concept of
thread scope is generalized to those global variables, accessed only by one thread, (left out of
its local scope due to the size problem). Other state variables are static variables local to the
root function or to the functions called by the roof function.

The peculiarity which determines this scheme as an implementation of the adaptive process is
that, at least one of its input inter-thread communications is considered as adaptation input
(a), as depicted in Figure 28. If there are input variables associated to this input, they are
considered as adaptation variables. This is actually just a useful conceptualization, which will
enable a clear identification and distinction of the software implementation of the different
types of APs.

The evaluation of the adaptive functionality is given at each output variable evaluation of the
root loop which is transferred to its correspondent output inter-thread system calls. The
adaptation is effective once the adaptation input values update the adaptation variables.

“When” the adaptation can take place is a matter closely related to the MoC. In this document
the examples focus on untimed MoCs. For the software implementation of these MoCs a
blocking semantic for the input and output inter-thread system calls is assumed. Then, one
adaptation cannot be done while the adaptation input system-call has not received all the
adaptation data. In addition, the adaptation also requires the consumption of a certain amount
of tokens from the rest of inputs. This implementation scheme keeps coherence with the
ForSyDe untimed MoC, where each adaptation cycle can be assimilated as a ForSyDe
evaluation cycle. In this implementation, each evaluation cycle requires the consumption of
new tokens at the adaptation input.

The following sections show how each type of adaptive process defined in [D11A] is
implemented in software. In a practical code, several hybrid situations, combining process-
based, function-based, mode-base and parameter-base adaptation and self-adaptive adaptation
can be present. Nevertheless, identifying each type of adaptivity in SW and stating modelling
guides and, eventually, modelling facilities able to capture this kind of constructs is
convenient to facilitate the specification and implementation of adaptivity in software.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 49 of 118

9.2 Parameter-based Adaptive Process in Software

The first type of AP defined in [D11A] is the parameter-based AP (paAP). The
implementation of the paAP details the SW implementation model given in Figure 28.

The adaptation is done through parameterization. The adaptation variables are a list of
internal parameter variables. The values read from the parameter input update the parameter
variables (pi). These parameter variables affect the input-output relationship of the root
function. The list of variables is of the same type Tp, and matches the type of parameters
input. There are no restrictions for Tp, that can be an abstract complex data structure.

The adaptation is effective once the adaptation input is completely read and have updated
the internal parameter variables. The root function reflects a fixed functional relationship
between input and output variables once the parameters are fixed.

Lets see an example of SW implementation of a paAP. It consists in an adaptive first order
IIR low pass filter. This filter has the next transfer function: H(z) = k1/ (1 +k2·z). Its adaptivity
consists in which it is possible to change the gain parameter (k1) and the pole position (k2).
The ForSyDe model is given on the left hand side of Figure 29. On the right hand side the
“refinement” of the Adaptive Process with untimed process constructors is given.

 in
paAP = combU2(N,2,filter_fun)
where

 out = paAP(in, inp)
 out[N] = f(in[N], inp[2])

inp

out combU2

(filter_fun)
in

Adaptation input
inp

out paAP

(filter_fun)

Figure 29. ForSyDe model of the adaptive LPF filter.

Following, an example of a C++ implementation is shown:

template<class T, unsigned int N>

class adaptiveLPF : public adaptiveLPF_if<T> {

public:

 adaptiveLPF();

 void in_param (T&); // filter parameterization input

 void in(T&); // samples input

 void out(T&); // samples output

private:

 void root_function();

 …

};

The adaptive process is implemented as a thread encapsulated by a class, called adaptiveLPF.
The interface of the adaptiveLPF class is an interface class, adaptiveLPF_if, which declares
three functions, one for writing input samples, one for reading output samples, and one for
the adaptation input. In this case, all of them are of the same generic type (T) since the
interface and the adaptive class both are actually a C++ class template, but they could be
different in other examples.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 50 of 118

template<class T>

class adaptiveLPF_if {

public:

 virtual void in_param(T&)=0; // parameters adaptation input

 virtual void in(T&)=0; // regular input

 virtual void out(T&)=0; // output

};

This interface is the visible part of the class implementing the paAP. This exemplifies a clean
C++ object oriented (OO) software implementation for the Parameter-based Adaptive
Process. A C++ programmer can conceive it as a parameter based adaptive and active object.

To understand how the paAP is implemented, the insights of the adaptiveLPF class are
shown. Firstly, the adaptiveLPF class constructor is shown:

 adaptiveLPF ::adaptiveLPF() {

 …

 // declare the root function as a process

 rtos_api_declare_thread(thandler, convert_to_fp(adaptiveLPF ::root_function), …);

 // declare message boxes for inputs and outputs

 rtos_api_declare_mb(mbinp, sizeof(float)*2,BLCK,...);

 rtos_api_declare_mb(mbin,sizeof(float)*N,BLCK, ...);

 rtos_api_declare_mb(mbout, sizeof(float)*N,BLCK,...);

 ...

}

This normally requires some additional declarations in the private part of the adaptive class:

template<class T, unsigned int N>

class adaptiveLPF : public adaptiveLPF_if<T> {

public:

 …

private:

 …

 rtos_api_thread_handler thandler; // handlers for the inner process

 rtos_api_mb_handler mbinp, mbin, mbout; // handlers for message box

}

In light red, systems calls to a hypothetical C-based RTOS-API have been used. A system call
(rtos_api_declare_thread) is in charge of declaring the root function as a static thread. The
convert_to_fp would be a macro in charge of converting a method pointer to a function

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 51 of 118

pointer. System calls for thread declaration usually take a function pointer instead of a class
method pointer as input parameter. The rest of system-calls correspond to the declaration of
three message boxes with blocking protocol. The message box is an inter-thread
communication service usually available in many RTOS. In case the RTOS would not provide
it, other inter-thread communication services could be used, i.e., mutexes. In the example, the
message boxes are in charge of buffering the received samples and the output samples. A
message box is also available for the adaptation input. The adaptation input is not different
from other inputs in terms of synchronization. This implementation could correspond to the
SW implementation of a HetSC specification under an untimed PN MoC.

Following, the implementation of the root function is shown:

void adaptiveLPF ::root_function() {

 T k1, k2;

 T input_var[N], output_var[N];

 unsigned int i;

 while(true) {

 rtos_api_read_mb(mbinp,&k1); // parameterization

 rtos_api_read_mb(mbinp,&k2);

 for(i=0;i<N;i++) rtos_api_read_mb(mbin,&input[i]); // input samples

 filter_fun(k1,k2,input_var,output_var,N); // evaluation

 for(i=0;i<N;i++) rtos_api_write_mb(mbout,&input[i]); // output samples

 }

}

Notice how the system calls for reading from the message box and the system calls for writing
the output message boxes are employed as input and outputs of the static thread which
implements the adaptive process. Since it is a first order filter, this example has a functionality
which fixes a partition constant of 2 (Np=2) for the parameter adaptation input, in_param.
That is, the adaptation is done by reading two input parameters of type T. Notice also that the
type of inter-thread communication mechanism is relevant, regardless it is considered as part
or not of the SW implementation of the adaptive process. The interface methods are also
implemented making use of the RTOS system-calls for reading and writing message boxes:

void adaptiveLPF ::in_param (T& token) {

 rtos_api_write_mb(mbinp,token);

}

void adaptiveLPF ::in(T& token) {

 rtos_api_write_mb(mbin,token);

}

void adaptiveLPF ::out(T& token) {

 rtos_api_read_mb(mbout,token);

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 52 of 118

}

A more general coding of the inner process is possible, for instance, through an array of input
parameters (float k[M];, being M the partition constant of the parameterization input). In
many cases, it will be also possible to write more efficient code avoiding input and output
variables whenever dependencies let it. Finally, in this SW implementation, inputs and
outputs handle the same type of parameter, T.

A way to declare and instance the adaptive LPF class would be the following one:

adaptiveLPF<float, 1024> adapt_LPF;

Then, from another part of software code, this adaptive resource could be used, for instance,
from three different threads. A control thread could be in charge of setting consecutive
adaptations:

// control thread

//setting first adaptation

adapt_LPF.in_param (1.2); // set K1

adapt_LPF.in_param(0.5); // set K2

// setting second adaptation

adapt_LPF.in_param(3.1); // set K1

adapt_LPF.in_param(0.6); // set K2

A second thread could be in charge of sending stimulus:

// unbounded loop in producer thread

while(true) {…

 adapt_LPF.in(data);

 // update data…

}

and the third thread, would read data processed by the adaptive object.

// unbounded loop in consumer thread

while(true) { …

 adapt_LPF.out (data); …

}

Notice that there are other alternatives for writing software code implementing this parameter-
based adaptive process. In this example, a C++ implementation using a C-based RTOS API
has been employed. Another possibility could be, i.e., assuming a C plain implementation
using the C-based RTOS API. Then, some kind of encapsulation could be done by putting
thread handlers, input and output variables, etc as members of a struct.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 53 of 118

This example also shows the close relationship between the implementation and the MoC. For
instance, in this example, a parameterization is required for each N-set of processed samples.
The software does not compute while the next adaptation parameters are pending. This
corresponds to an implementation of a variant of a Kahn process network with finite FIFO
channels. This could not be always interesting for an implementation. Implementations based
on synchronous MoCs would let compute more evaluation cycles without forcing a regular or
periodic write of adaptation parameters. In this case either, some kind of MoC refinement (if
the specification MoC was untimed) or employing other MoCs at the specification level (if
the software implementation preserves the MoC), such synchronous ones, will be necessary.
This issue is not in the scope of this document.

9.3 Mode-based Adaptive Process in Software

In [D11A] the mode-based AP or mAP is defined. All that has been said for the
implementation of the paAP applies, considering that the adaptation input updates a single
parameter of a countable and finite type. This parameter is called mode.

There is a finite and known set of modes for each adaptive process. The mode serves to
decode the functional relation to be computed between the input and the output. Each decoded
computation can be implemented either through plain code (which can do an arbitrary number
of function calls) or by means of one function call which directly relates the input variables
with the output variables.

The next example shows the declaration of the SW implementation of a mAP. The mAP is a
low pass first order filter of fixed gain and cut-off frequency with four modes. Each mode
correspond to a different type of filtering (Butterworth, Chebychev, Bessel and Elliptic), with
fixed characteristic parameters.

enum mode_t {BUTTER_M=0, CHEBY_M, BESSEL_M, ELLIPTIC_M};

template<class T, unsigned int N>

class adaptiveLPF {

public:

 adaptiveLPF();

 // input ports SW implementation

 void mode (mode_t mode); // mode input

 void in (T&); // samples input

 void out(T&); // samples output

private:

 void root_function();

 void butter_LPF(T* in,T* out);

 void cheby_LPF(T* in, T* out);

 void bessel_LPF(T* in, T* out);

 void elliptic_LPF(T* in, T* out);

} ;

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 54 of 118

The root_function would be implemented as follows:

template< class T, unsigned int N>

void adaptiveLPF<T, N >::root_function() {

 bool mode;

 T in_var[N], T out_var[N];

 while(true) { // root loop

 rtos_api_read_mb (minp,&mode); // mode input

 for(unsigned int i=0; i < N; i++) rtos_api_read_mb(in_var[i]);

 // functionality computation

 switch(mode) {

 case BUTTER_M:

 case default:

 butter_LPF(in_var, out_var);

 case CHEBY_M:

 cheby_LPF(in_var, out_var);

 case BESSEL_M:

 bessel_LPF(in_var, out_var);

 case ELLIPTIC_M:

 elliptic_LPF(in_var, out_var);

 }

 for(unsigned int i=0; i < N; i++) rtos_api_write_mb(out_var[i]);

 }

}

Let’s see now an example where this kind of adaptivity has been identified in a complex
sequential and real code. The following is an extract of the reference code of a H.264 encoder.
In the following extract, a mode adaptive object is in charge of doing the entropy encoding.
This mode adaptive object is called MB_BLOCK_SIZE (16) times, one for each syntax
element (currSE).

// call to adaptive functionality

//=== encode intra prediction modes ===

 if (intra4)

 for (i=0; i < (MB_BLOCK_SIZE>>1); i++) {

 // set currSE and dataPart (inputs to the adaptive object)

 …

 //--- encode and update rate ---

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 55 of 118

 dataPart->writeSyntaxElement (currSE, dataPart);

 …

 }

The call to the adaptive code has been bolded. It can be seen how the input (currSE) and the
output (dataPart) are directly related by the adaptive call. Previously, in other section of the
code, the specific entropy encoding mode was set. This is shown in the next extract of the
H.264 reference code:

 …

 // mode setting

 if (input->symbol_mode == UVLC)

 dataPart->writeSyntaxElement = writeSyntaxElement_UVLC;

 else

 dataPart->writeSyntaxElement = writeSyntaxElement_CABAC;

 …

where the function pointer writeSyntaxElement and the called functions are declared as
follows:

int (*writeSyntaxElement) (SyntaxElement *se, DataPartition *this_dataPart);

int writeSyntaxElement_UVLC(SyntaxElement *se, DataPartition *this_dataPart) {…}

int writeSyntaxElement_CABAC(SyntaxElement *se, DataPartition *this_dataPart) {…}

It can be seen how a function pointer technique has been used to solve in a sequential C which
is usually known in object oriented theory as dynamic polymorphism. Thus, if C++ were used
in the implementation, this adaptive code can be solved also by means of a base pointer
technique. That is, a parent class pointer can be used to reference and call common (in terms
of declaration) methods of derived class instances. This code is sequential, however this does
not remove the generality of the discussion. Indeed, the mode setting and the invocation code
can be (with more or less transformation) restricted to the scope of a thread. The declaration
and implementation of the invoked functions must be visible. The function pointer technique
will be efficiently used in the next section to implement function-based Adaptive processes.

9.4 Function-based Adaptive Process in Software

In [D11A], the software implementation of a function-based AP or fAP is proposed. It is
similar to the mAP implementation but substituting the mode parameter by a function pointer
parameter. Therefore, what the software adaptive process receives is indeed the function to
execute. Specifically, the static thread implementing the adaptive process receives through
its adaptation input a pointer to the function to be executed. Under an untimed MoC, the
function pointer is received before each evaluation.

This is exemplified now with the adaptive filter. Let’s assume that a third party provides a
library of different types of LPF functions, whose declarations are the following ones:

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 56 of 118

 // Library of LPF filtering

template< unsigned int N, class T> void butter_LPF(T* in,T* out);

template< unsigned int N, class T> void cheby_LPF(T* in, T* out);

template< unsigned int N, class T> void bessel_LPF(T* in, T* out);

// template< unsigned int N, class T> void elliptic_LPF(T* in, T* out); // in the future

Let’s assume that the fourth function is not available in the current version of the library, but
it will be available in future versions. The implementation of a mAP would require explicitly
knowing the different possible mode functionalities. Thus, a current mAP implementation
would decode three modes. In the future, after updating the third party library, the mAP
should be rewritten to add a fourth mode which comprises the elliptic filtering. The alternative
is to implement the adaptive process as a fAP. The declaration of the C++ class implementing
such fAP is the next one:

template< unsigned int N, class T> void (*FPTR) (T* in, T* out);

template<class T, unsigned int N>

class adaptiveLPF {

public:

 adaptiveLPF();

 // input ports SW implementation

 void func_in(FPTR fun); // function input

 void in (T&); // samples input

 void out(T&); // samples output

private:

 void root_function();

 …

} ;

where the root_function would be implemented as follows:

template< class T, unsigned int N>

void adaptiveLPF<Tm, T, N >::root_function() {

 FPTR fun;

 T in_var[N], T out_var[N];

 unsigned int i;

 while(true) { // root loop

 rtos_api_read_mb (func_in,&fun); // reads function input

 for(i =0; i < N; i++) rtos_api_read_mb(in_var[i]);

 fun(in_var, out_var);

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 57 of 118

 for(i=0; i < N; i++) rtos_api_write_mb(out_var[i]);

 }

}

It is interesting to see then how the parameterization input is provided. For instance, the
control thread in charge of setting the consecutive function adaptations could have a code like
this:

// control thread

// declare functions

…

// setting first adaptation

adapt_LPF.func(cheby_LPF);

// setting second adaptation

adapt_LPF.func (butter_LPF);

…

Notice that the input parameters are the names of the filtering functions to be executed.
Once the third party provides the new version of the filters library, the control thread can also
perform the following call without needing to rewrite the fAP:

// control thread

…

// setting n-th adaptation

adapt_LPF.func(elliptic _LPF);

…

A fAP can provide an additional advantage respect to a mAP, such as speed, since, once
the adaptation has been made, there is no need for decoding the function to execute.

9.5 Process-based Adaptive Process in Software

Other kind of adaptive object defined in [D11A] is the process-based AP or prAP. In
ForSyDe, this adaptive process can adapt not only the function to be executed but also the
process constructor. This involves that, in the adaptation, the ForSyDe process interface can
also change. In terms of ForSyDe, this means changes in several aspects.

• The types of the input and output signals.

• The number of ForSyDe events read from input signals and written in the output
signals at each evaluation (input and output partition).

• The number of input and outputs.

This has implications in terms of SW implementation. A simplification of the SW
implementation is to consider a fixed interface, in terms of the set of method interfaces
available. However, the inputs and outputs which are employed at each evaluation cycle and

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 58 of 118

the number of tokens read and written can change at each evaluation cycle. To exemplify it, a
new version of the adaptive low pass filter class is shown. Its declaration is the next one:

template<class T>

class adaptiveLPF {

public:

 adaptiveLPF();

 // input ports SW implementation

 void adapt_in(adapt_struct as); // function input

 void in (T&); // samples input

 void out(T&); // samples output

private:

 void root_function();

 …

} ;

In this version, the N template parameter, which determines the number of input tokens read
and output tokens written, has disappeared. It is because, now, this is passed as parameter of
the adaptation input. Notice the difference respect to the software implementation of the
previous adaptive processes, where the adaptation parameters did not change the number of
input or output tokens received and transferred in the inter-thread communications (N). N was
settled at compilation time, since it was a template parameter. However, in this example, N is
part of the adaptation parameter, of the struct type adapt_struct, which is declared as follows:

template<class T> void (*FPTR) (T* in,T* out, unsigned int N);

struct adapt_struct {

 FPTR fun;

 unsigned int N;

};

The struct carries the number of samples to be evaluated after the adaptation and the function
pointer with the function to be evaluated. Now, the function pointer is a little bit different
from those shown for the implementation of the fAP. Now the declaration of the function
pointer corresponds to functions that take as parameter N. Therefore, these functions are more
general since they can process a different amount of samples each time they are called.

template<class T> void butter_LPF(T* in,T* out, unsigned int N);

template<class T> void cheby_LPF(T* in, T* out, unsigned int N);

template<class T> void bessel_LPF(T* in, T* out, unsigned int N);

template<class T> void elliptic_LPF(T* in, T* out, unsigned int N);

Then, the root function would be written as follows:

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 59 of 118

template< class T>

void adaptiveLPF<Tm, T, N >::root_function() {

 adapt_struct adapt_var;

 T * in_var, T *out_var;

 unsigned int i;

 while(true) { // root loop

 rtos_api_read_mb (minp,&adapt_var); // read adapt_var struct

 reallocate(in_var, adapt_var.N*sizeof(T));

 reallocate(out_var, adapt_var.N*sizeof(T));

 for(i =0; i < adapt_var.N; i++) rtos_api_read_mb(in_var[i]);

 adapt_var.fun(in_var, out_var,adapt_var.N);

 for(i=0; i < adapt_var.N; i++) rtos_api_write_mb(out_var[i]);

 }

}

As can be seen, this time, the number of input and output system calls directly depends on the
adaptation input. Then, the thread which feeds the adaptation input of this implementation of
process-based adaptive object could present a code like the next one:

// control thread

adapt_struct adapt_conf

// filters first 1000 samples with a butterworth filter

// setting first adaptation

adapt_conf.fun = butter_LPF;

adapt_conf.N = 1000;

// performing first adaptation

adapt_LPF.adapt_in(adapt_conf);

// filters next 5000 samples with a cheby filter

// setting second adaptation

adapt_conf.fun = cheby_LPF;

adapt_conf.N = 5000;

// performing second adaptation

adapt_LPF.adapt_in(adapt_conf);

…

This example represents a slight change on the process interface (referred to the partition of
the inputs and outputs). From the ForSyDe point of view, this already involves a change on
the ForSyDe process constructors at each evaluation. More complex implementation schemes

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 60 of 118

can be found if it is assumed that the number and data types of input/output signals is
dynamic. A possibility for such implementations is, for instance, to pass different class
instances at each evaluation of the static thread. Each class instance can present a different
interface and functionality. In this case, the number of inter-thread communications of the
process (somehow, the thread “interface”) would be fixed, since, static inter-thread
communication instances are assumed.

9.6 Self-Adaptive Process in Software

An immediate possibility for implementing the self-adaptive Process is to introduce a second
thread for the calculation of the next adaptation. This thread can have the same inter-thread
communication with the producer threads writing the adaptive thread (the thread
implementing the adaptive process), to have the same inputs. It can also receive the output
tokens of the adaptive thread from the threads reading such output.

Figure 30 proposes an equivalent scheme where the inputs of the next adaptation thread are
generated by the adaptive thread. Notice that, under the assumption of implementing untimed
MoCs with blocking synchronizations and consuming reads in the inter-thread
communication, a retransmission of the inputs and outputs of the adaptive thread is necessary.
All of them become inputs of the next adaptation thread, used to compute the adaptation
parameters, mode, function, etc, which are provided to the adaptive thread. Therefore, the set
of adaptive thread plus new adaptation thread, together with their inter-thread communication
is the implementation of the self-adaptive process.

i1

AP thread

SW

thread

Inter-thread

communication iN

a

o

i1 iN
o

Next Adaptation thread

Figure 30. A SW implementation of a self -adaptive process

An alternative implementation does not use the new thread. In such a case, a the thread
implementing the adaptive process has to dedicate part of its internal code to calculate the
value of the next adaptation parameters, mode, function or process to be applied in the next
evaluation. This is more efficient whenever the evaluation of the next adaptation input cannot
be easily parallelized from the input/output computation or when the computation of the next
adaptation thread is light-weighted with respect to the overhead of the inter-thread
communication between adaptive and next adaptation thread.

9.7 Implementation of Synchronous APs

In chapter 6, the implementation as synchronous software will be introduced. It actually
constitutes an additional extension of the SWGen methodology, which covered untimed
MoCs, but not synchronous MoCs before ANDRES. This implementation has a direct link
with the semantic of HetSC synchronous MoCs, where the synchronous APs shown in chapter
11, are framed.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 61 of 118

10. Adaptive Processes in HetSC

This chapter shows how adaptivity is supported by the HetSC methodology. This proposal is
based on the ForSyDe formal adaptive processes developed in [D11A] and on the way they
can be implemented as eSW, as explained in the previous chapter. Specifically, the chapter
provides guidelines for the specification of APs in HetSC (HAPs). These guidelines state the
types of APs supported; focus the effort of the user in identifying which type of AP is most
suitable for a given specification problem; and finally, explain how to specify such an AP in
SystemC following the HetSC methodology. The SystemC structures generated can be then
later either manually refined to software following the scheme shown in the previous chapter,
or automatically generated by means of the SWGen methodology.

10.1 Introduction

As explained in chapter 8, the AP (Figure 31a) is a metamodelling concept which serves to
unify the understanding of the AO among the different SystemC-based methodologies of
ANDRES, among them, HetSC. This chapter defines how an AP is specified in HetSC, using
HetSC and SystemC constructs. For the rest of the discussion, the general implementation of
the AP in HetSC is shortly called HAP (HetSC Adaptive Process). Patterns to tell how to
specify HAPs will be given in sections 10.3, 10.4 and 10.5. These patterns can be considered
design patterns, as well as specification patterns, since they have been developed to support
the immediate application of the SWGen methodology for automatic generation of eSW.
Before, the specification of a HAP is addressed in a general way in this section, to later
introduce the different types of HAPs (and thus, their corresponding patterns) in section 10.2.

A HAP is specified as a SystemC static process (Figure 31b). Since SystemC processes are
associated to member functions of SystemC modules, a HAP will be necessary enclosed by a
SystemC module (as represented in Figure 31b).

HAP

i1

in

Adaptation

signal

o

i1

in

spa f

ppa

a) AP b) HAP with exclusive wrapper module

f

c)

Adaptation

input

Figure 31. Specification of an Adaptive Process in HetSC.

The HAP can have associated a set of context variables. It is recommended these variables to
be local to the function associated to the SystemC process, although they can be out of it if
there are stack limitations. In such a case, it is recommended these variables to be inside the
‘wrapper’ module. If that is not possible, then the variables can be global (out of the module),
but never shared by other processes2. Global variables are considered to be shared in HetSC if
they are accessed by a second process with involvements in its control or data path or in its
outputs. The communication of the HAP with the rest of the system is through channels, as

2 This takes into account a basic rule of the HetSC General Specification Methodology, to obtain a strict
separation between computation and communication, the modularity of the specification, and the feasibility of
the SWGen flow among other design activities.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 62 of 118

the HetSC methodology involves. The MoC of the specification fixes the type of HetSC
channels employed.

The main feature which enables the consideration of this process-based structure as a HAP is
that at least one of the inputs is considered as an adaptation input. The rest of input channels
are considered as regular inputs. Then, an adaptation is considered to be a change in the
internal state of the HAP which specifically changes adaptation context variables. This, in
time, changes the functional relationship between the regular inputs and the output. Moreover,
it can even change the HAP interfaces. HAPs with more than one output channel can be also
specified. In such a case, a ForSyDe adaptive process is necessary for abstracting each
functional relationship fixed between the regular and adaptation inputs and each specific
output. In order to focus and simplify the discussion, single-output patterns will be presented.

The HetSC MoC fixes the level of detail of time information handling. This means that the
specification can fix the adaptation time only at a specific-level of detail: the one handled by
the MoC. In HetSC the MoC is strongly characterized by channel semantics. Therefore, the
usage and semantic of HAPs are involved by the HetSC MoC, and thus by the channels and
other specification facilities related to that MoC.

It is recommended, although not mandatory, to reserve an associated wrapper module for the
HAP (Figure 31c). In such a case, the application of the HetSC methodology involves that the
communication of the adaptive process with the rest of the specification has to be done by
means of ports. Guidelines given in the chapter will be based on this assumption.

HAPs are design patterns based on ForSyDe. In ForSyDe, process constructors determine the
MoC, which can be related to HetSC structures. Thus, for instance, in a ForSyDe untimed
adaptive process, the information available about adaptation time just considers the
relationship given between the amount of ForSyDe events that have to be read at the regular
inputs and the amount of ForSyDe events that are read from the adaptation input (for a single
adaptation), which is determined by the partition functions of the adaptive process
constructor. In a similar way, in HetSC, synchronization semantic and buffering size of the
input/output channels and the internal functionality of the HAP, and the MoC will determine
the specific relationship between the amounts of tokens (data units) consumed in the regular
inputs and the tokens consumed in the adaptation inputs. The tokens transferred in the
SystemC model correspond to ForSyDe events at the metamodelling level.

10.2 Types of HAPs

Two typologies of APs are distinguished in HetSC. One comes from the consideration of the
specification domain (that is, of the MoC). The other one comes from the typology reminded
in Chapter 8, considering the information adapted. This work covers the APs under two types
of specification domains: Untimed and Synchronous, for the different types of information
adapted (parameter, mode, function, process). This is shown in Table 1. Obviously, the cross-
product of these sets produces till 10 types of APs.

AP Type Value

Specification Domain Untimed, Synchronous

Information Adapted

(Adaptation Context)

Parameter, Mode, Function, Process,

Self-Adaptive

Table 1 Types of APs currently covered in HetSC.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 63 of 118

10.2.1 Untimed HAPs

Untimed HAPs handle no notion of strict-time about its inner computation. Therefore, the
only information about adaptation time is the relationship between the amount of data units
(tokens) consumed at the adaptation input and the amount of tokens consumed at the regular
inputs. In the most general case, such a rate can be fixed at each adaptation. Then, the HAP is
inscribed in dynamic data flow model. In a more specific case, it can remain the same for each
adaptation during the whole simulation time. Then, the HAP can be part of a static data flow
model.

In any case, in an untimed HAP, the adaptation time comes as a function of consumed data,
both at regular and adaptation inputs. An adaptation happens only after a given amount of
data tokens have been consumed at adaptation input. Additionally, an adaptation cannot
happen till a minimum amount of tokens has been consumed from the regular inputs for each
adaptation.

Untimed HAPs alternated adaptation and computation. An adaptation precedes its associated
computation. This sequence of adaptation-computation is synchronized with the producer and
consumer processes. An HAP can involve the blocking of any of the connected processes,
depending on the size capabilities of the rest of connected processes.

Untimed HAP

f

Adaptation
input

Ri1

Ri2

Ai1

Ri1

Ri2

Ai

1st Adaptation
1st Computation

2nd Adaptation

…

2nsd Computation

t

Figure 32. Adaptation time in untimed HAP comes as a relationship of consumed data.

As an example, Figure 32 shows an untimed HAP with two regular input ports (Ri1 and Ri2)
and an adaptation input (Ai1). Lets assume that this untimed HAPs can be metamodelled are

as an untimed ForSyDe APs, whose input partitions are fixed to be γRi1=2, γRi2=1 and γAi1=1.
The bottom part of Figure 32 shows the occurrence of write accesses to the input channels. It
can be seen first that in order to deduce the adaptation time is not necessary (not even
possible, if the whole model does not consider time) to consider or to distinguish an
adaptation strict-time (that is, a specific SystemC time stamp). What the untimed HAP of
Figure 32 states is that an adaptation will not take place till a given amount of tokens at

adaptation input (γAi1=1 in this case) have been consumed. It also states that a further

adaptation will not take place while the HAP do not consume γRi1=2 tokens from the first

regular input and γRi2=1 tokens from the second regular input, as well as the necessary tokens
from the adaptation input. Figure 32 shows for instance, that despite a second adaptation
token can be read, the 2nd adaptation is not done till the 3 required tokens at the two regular
inputs are consumed. Then, the 1st computation is done and the 2nd adaptation can take place.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 64 of 118

Untimed HAPs are suitable when they have to be employed in untimed models, which do not
handle explicit strict-time information on the function/process computation. This is quite
usual in software models which are written to preserve functionality independently on the
time conditions established for the target architecture.

10.2.2 Synchronous HAPs

Synchronous HAPs handle a more detailed notion of time. Two types of synchronous APs are
distinguished. Synchronous Reactive APs and Clocked-Synchronous APs. In the former case,
the adaptation can happen in a slot, while in the second case in a cycle. In the Synchronous
HAP, there is a fixed relationship between the amount of data consumed from the regular
inputs and from the adaptation input. Just one data unit is read from each regular input and
from the adaptation input at each slot or cycle. This abides the ForSyDe meta-modelling of
synchronous processes, where a fixed partition of 1 is assigned to every input and output.
Complex data type of data can be still transferred through the inputs. Then, for instance, burst
of data can be transferred through the inputs of the synchronous model. A facility like the
uc_burst class integrated in the HetSC library is used in the HetSC examples to show this
possibility. More information about this can be found in chapter 11.

Further consideration can be done about the adaptation time.

Clocked Synchronous APs have a clock input, that is, a global event, in such a way that the
AP computation is triggered at the same time (thus synchronized with) the rest processes of
the specification (or the CS domain of the specification) by this global event. In Clocked
Synchronous APs or CS APs, adaptation input is read at each clock event, before performing
the computation. The information about adaptation time is therefore more detailed than in the
case of untimed APs, since adaptation takes place at each clock input event whenever there is
a change of value in the adaptation input.

CS-HAP

f

Adaptation
input

Ri1

Ri2

Ai1

Ri1

Ri2

Ai
…

t

clock

t1 t2

1st Adaptation

1st Computation

2nd Adaptation

2nd Computation

t3

3rd Adaptation

3rd Computation

 C1 C2 C3 CYCLES

Figure 33. Adaptation in the CS-HAPs takes place at cycles.

Figure 33 shows a clocked-synchronous HAP with two regular inputs and one adaptation
input. An additional input port transfers the global clock trigger event to the CS-HAP. The
read of the regular inputs and of the adaptation inputs take place at specific time stamps ti.
Their actual value is not relevant, but the fact they are distinct and consecutive time stamps,
defining a total order. In the CS-HAP, the adaptation input Ai is always read the first. Then,
the regular inputs can be read in any order (and as many times a required during the cycle).

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 65 of 118

Clocked Synchronous HAPs will be used when they are incrusted in a system-level model
handling a clocked notion of time. In a software implementation, such a clock is a global
software event, in charge of triggering all the clocked part of the software partition of the
system. The implementation of the software clock will be based on the implementation of the
software event. The software event can be solved in different ways (by means of software
signals, or other inter-thread primitives). The software clock can define an actual time period
(by using the tick timer) or not. In the former case is useful when the related analysis tools are
able to structure the code in a reactive way and analyze the delay taken by the critical path (in
a manner similar to SW). For instance, audio application will require at some point the
production of samples at a fixed rate, i.e. 8KHz. In such a case, the model, and further the SW
application, can be designed to respect such latency of 125µsec. Very roughly, an embedded
system working at 80MHz, would have a margin of 10000 cycles (instructions assuming a
perfect pipelined architecture) in the works case to compute the required functionality per
sample. However, the HetSC understanding of the clock does not necessarily relates the clock
to a periodic clock. With respect to the software implementation of the CS-HAP it has been
necessary an extension of the SWGen methodology. The specific implementation supported
by SWGen, showing SWGen automatically provides an eSW implementation of the software
clock, the software event, and other primitives supporting the CS domain is further explained
in chapter 6.

The Synchronous Reactive HAPs, is a SR process of HetSC. Such a process can be triggered
by any write in any of its inputs, provoking its computation. Therefore, in the SR-HAP, the
adaptation input can “asynchronously” adapt the inner functionality which relates the regular
inputs with the output. This means that one or N adaptations can be performed (in one or N
slots/cycles) without involving any processing of regular outputs (in contrast to the CS-HAP,
where the adaptation and the computation takes place at the same cycle3). For a given
computation, only the last adaptation will be effective. Symmetrically, several reactions can
take place with no kind of adaptation in between. Each reaction will be due to a trigger (or,
what is the same in the Synchronous Reactive (SR) approach of HetSC, a write) of any of the
input channels of the SR-HAP. Both adaptations and computations take place at given and
different time stamps, which, as in the CS case, establish a total order on events. Such time
stamps are in this case slots (instead cycles). The write/trigger of the adaptation inputs and
regular inputs can take place at the same time slot. In such a case, in coherence with the other
types of HAPs, the adaptation takes precedence over the computation.

3 In CS-HAP there is computation at every cycle, which does not mean that there is adaptation take place at
every cycle in CS-HAP. However, if there is adaptation, it takes place at the same cycle, before the computation.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 66 of 118

SR-HAP

f

Adaptation
input

Ri1

Ri2

Ai1

Ri1

Ri2

Ai
…

t

t1 t2
1st Adaptation

2nd Adaptation

t3 t4 t5 t6

1st Computation

2nd Computation
3rd Adaptation 3rd Computation

S1 S2 S3 SLOTS S4 S5 S6

Figure 34. Adaptation in the SR-HAPs takes place at slots.

Figure 34 shows a SR-HAP of two regular inputs. In this case, a first trigger of the HAP takes
place at time stamp t1 due to a write to the adaptation input channel Ai. Then an adaptation
taking 0 time takes place at t1 (1

st slot). Later on, there is a computation at t2 (2
nd slot) due to

a write to the first regular input. At a later time stamp t3 (3
rd time slot), there is a SR-HAP

trigger due to a simultaneous write of both regular inputs. As can be seen, computation at
second and third slot use the state left by the first adaptation, without needing any adaptation
in between. Later on, two consecutive adaptations are forced in the 4th and the 5th time slots.
A new computation is done in the 6th time slot (in t6), which uses the state left by the 5th
adaptation.

Two types of SW implementation are foreseen for SR-HAPs (and SR specifications in
general). The former one can be based on asynchronous events (i.e., exceptions) in charge of
triggering software computation. The second one consists in generating an implicit SW
periodic clock whose period is a basic implementation parameter, unlike in the CS case,
where the global clock was explicitly specified. Then, this implicit global clock is in charge of
defining the granularity of “software time” (which can be tuned to be bigger than the
processor clock and make software more efficient). Then, the simultaneous software events
are defined to be those relying on the global software period. This global software period is a
design parameter. In one side, it has to be big enough to keep the greater reaction time lesser
than it. On the other side, it would be interesting it to be short enough to let reactions to single
events (fundamental mode), which would simplify HAP coding.

Synchronous Reactive APs are suitable for specifying processes whose functionality has to be
changed by an asynchronous event, such as a keyboard keystroke, etc, and the adaptation data
can be atomically passed to the adaptive process.

The different types of HAPs (regarding the type of adaptation context or adaptation
information) will be explained first for the untimed HAPs (section 10.3), to later extend their
explanation to synchronous HAPs.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 67 of 118

10.3 Patterns for Untimed HAPs

10.3.1 Untimed Parameter-based Adaptive Process

Figure 35a reminds the formal representation for the untimed paAP. There, i1 to in and spa are

untimed ForSyDe signals (s&).

paHAP

i1

in

spa

o

p1

i1

in

spa
......

pn

f

ppa

a) b) paHAP with exclusive wrapper module c)

parameter

adaptation

input

f

p1

......

pn

Figure 35. Untimed paHAP.

The Figure 35b shows the general HetSC structure of an untimed parameter-based HAP
(paHAP). Figure 35c does the same using an exclusive wrapper module.

The peculiarity of the paHAP is the set of parameterization variables associated to the
SystemC process. They can be within the local scope of function (f) or, if not possible, they
are recommended to be within the ambit of the wrapper module, as in Figure 35.

When to use it:

The paHAP is useful when the different functionalities performed among adaptations can be
done by means of the same computation structure, changing only a set of fixed and well
defined parameters. Then, the HAP root function can include a single parameterizable
function.

A typical case could be an adaptive FIR filtering, where each adaptation only needs to modify
the filtering coefficients. Then, external processes just pass different sets of coefficients
through the adaptation input to, for instance, switch from a low-pass filter (LPF) to a high-
pass filter (HPF), to change the cut-off frequency of the LPF, etc. In any case, the function
structure remains the same and can be reused by the HAP.

Design Pattern:

The untimed paHAP class can be declared as follows:

(1) class user_paHAP : public sc_module {

(2) public:

(3) sc_port <IF<T_1> > in_1;

(4) sc_port <IF<T_2> > in_2;

(5) …

(6) sc_port <IF<T_N> > in_M;

(7) sc_port <IF<T_P> > in_param;

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 68 of 118

(8) sc_port < IF<T_O> > out;

(9) void root_function();

(10) SC_CTOR (user_paHAP) {

(11) SC_THREAD(root_function);

(12) }

(13) private:

(14) T_P param[N_param];

(15) T_1 input_var1[N_in1], T_2 input_var1[N_in2], …, T_N input_var[N_inM];

(16) T_O output_var[N_out];

(17) …

(18) };

T_i stands for the specific type of data to be transferred at each input/output port. This data
type defines the specific untimed interface used IF. Therefore, IF can be substituted for the
different interfaces employed in the untimed MoCs of HetSC, for instance, sc_ fifo_blocking_
in_if, for the input, and sc_fifo_blocking_out_if, for the outputs. Equivalently, specific ports
can be used to simplify the syntax. For instance, the untimed HetSC ports uc_fifo_blocking_in
for the inputs and uc_fifo_blocking_out for the outputs.

N_param stands for the number of adaptation parameters. It can be generalized if different
parameters of different types where needed. N_in1, N_in2, …N_inM stand for the partition
which the internal functionality will require from each input. The meaning of each N_in
depends on the type of untimed MoC. Under a static data flow, each N_in figure means the
actual and fixes partition of the input. Under a dynamic data flow, each N_in is the maximum
partition. In any case, such a partition is fixed by the structure of the inner functionality,
which fixes how many input tokens have to be read from each input in order to compute the
output.

For a static dataflow approach, the internal root function can be then coded as follows:

(1) void user_paHAP::root_function() {

(2) unsigned int i;

(3) while(true) {

(4) // read adaptation parameters

(5) for (i=0;i<N_param;i++) {

(6) in_param->read(param[i]);

(7) }

(8) for(i=0;i<N_in1;i++) in_1->read(input_var[i]); //

(9) ...

(10) for(i=0;i<N_inN;i++) in_N->read(input_var[i]); //

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 69 of 118

(11) param_fun(N_param, param,

 N_in1, input_var1,

 N_in2, input_var2,...,

 N_inN, input_varN,

 N_out, output_var); // evaluation

(12) for(i=0;i<N;i++) ++) out->write(output[i]); // output samples

(13) }

(14) }

An important and distinguishing fact here is the blocking semantic of these input/output
interfaces. They let code the paHAP under an untimed MoC. The pattern clearly separates the
adaptation parameters (concentrated in (5) to (7) statements), from the read of regular inputs
(from (8) to (10)), from the evaluation (11), and from the output (12). The parameter input has
to be read as many times as parameters of T_P type have to be read, fixing the parameter
input partition.

The coding has to respect the completion of parameter and regular inputs reading, before the
evaluation. This ensures the adaptation to be performed before the evaluation. Regarding to
the rest of aspects of the code there is flexibility to modify much of this structure in several
aspects. For instance, the read of regular inputs can be rearranged. It is possible to exchange
the order of loops in (8) and (10). It is also possible to interleave input port reads, for instance,
reading the first token from input in_1, then the first token from input two, and so on till
reading and amount of tokens from each of the M-th inputs given by its partition. Moreover,
the evaluation can be also spread among the inputs and outputs, then reducing the need of
buffering, done in the shown code by means of param, output_var, input_var1, input_var2,
…, and input_varN array variables.

As well as such flexibility, the code shown also admits a set of simplifications. Obviously, the
template defined could work with homogeneous data types for the regular inputs, adaptation
data and output data. In the most simple case, T_1 = T_2 =…= T_N = T_O = T_P. In some
cases, the number of inputs can be also reduced. The function call in charge of the evaluation
(11) can be also simplified. In the general case shown there, param_fun is a function which
works with M input arrays for the collected regular inputs, every of them of a different length,
and additional array of a given length for the parameters input and finally and output array
with its own length for dumping results. Obviously, this function call will get simpler if
working with arrays of the same length. Depending on the algorithm it can also happen that
the function can work on input and output partitions of length 1. In a simple 1-input case, the
root function can get as simple and compact as follows:

(1) void user_paHAP::root_function() {

(2) unsigned int i;

(3) while(true) {

(4) // read adaptation parameters

(5) for (i=0;i<N_param;i++) {

(6) in_param->read(param[i]);

(7) }

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 70 of 118

(8) // evaluation

(9) out->write(param_fun(param, in_1->read()));

(10) }

(11) }

In this case, the read of regular inputs is compacted in the same sentence of the param_fun
call. There is no need to buffer regular inputs, since functionality operates on inputs of
partition 1. The same can be told for the output. This structure is maybe not the most efficient
one since it obliges one adaptation for each data unit processed. Because of this, for untimed
HAPs it can make sense evaluating on longer partitions for regular inputs.

Example:

Following, an example of a HetSC specification of an untimed paHAP is presented. It consists
in an adaptive Low-Pass Filter (LPF), based on the same computation structure (i.e. either FIR
or IIR), which only changes the filter coefficients (bk):

template<class T, unsigned int N>

class adaptiveLPF : public sc_module {

public:

 sc_port <sc_fifo_blocking_in_if<T> > in_param; // filter parameterization input

 sc_port <sc_fifo_blocking_in_if<T> > in; // samples input

 sc_port < sc_fifo_blocking_out_if T> out; // samples output

 void root_function();

 SC_CTOR(adaptiveLPF) {

 SC_THREAD(root_function);

 }

private:

 T k1, k2;

 T input_var[N], output_var[N];

 …

}

where the root function has the next implementation:

template<class T, unsigned int N>

void adaptiveLPF <T,N>::root_function() {

 unsigned int i;

 while(true) {

 in_param->read(k1); // gain parameterization

 in_param->read(k2); // pole parameterization

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 71 of 118

 for(i=0;i<N;i++) in->read(input_var[i]); // input samples

 filter_fun(k1,k2,input_var,output_var,N); // evaluation

 for(i=0;i<N;i++) ++) out->write(output[i]); // output samples

 }

}

As can be seen, it is a structure quite similar to the structure of the software implementation
presented in the previous chapter, but substituting inter-thread communication system calls by
HetSC channel accesses. Obviously, the corresponding channel instances have to be declared
and instanced to connect the adaptive SystemC process with other processes of the
specification. As in section 9.2, the inner function called from the root function, filter_fun,
provides a functional relationship between every output sample variable (output_var[i] for
0≤i≤N) transferred to the output and the set of input variables read from the regular inputs
(input_var[i] for 0≤i≤N) and the adaptation parameters, k1 and k2. The blocking read
semantic of the channels bound to the inputs ports ensures the synchronization between the
computation and the adaptation. Therefore, the functionality is computed with both,
adaptation parameters and input samples updated before each evaluation.

In this example, the adaptation input is of the same type as the rest of the inputs. The partition
of the adaptation input is, in this case, 2, since each adaptation requires reading 2 tokens, the
gain parameter (k1) and the pole parameter (k2). The body of the root_function determines
when adaptation is carried out respect to the number of input samples computed, N. Since N
is a template parameter, the number of tokens read and written does not change among
different adaptations.

Following, an extract of the code of a sc_main function where the paHAP is declared,
instanced and bound to channel instances is shown:

 …

 // channel declaration and instances

 uc_fifo<float> in_param_fifo(“in_param_fifo”,2);

 uc_fifo<float> in_fifo(“in_fifo”,1000);

 uc_fifo<float> out_fifo(“out_fifo”,1000);

 // paAP declaration and instance

 adaptiveLPF<float,1000> adaptLPF;

 // paAP binding

 adaptLPF.in_param(in_param_fifo);

 adaptLPF.in(in_fifo);

 adaptLPF.in(out_fifo);

 …

Instances of uc_fifo class of a sufficient size have been used, thus a BKPN MoC has been
employed. However, schemes under different untimed MoCs can achieve the same result. For
instance, the uc_fifo instances of this example can be substituted by uc_inf_fifo instances. The
use of other types of channels of HetSC untimed MoCs will be illustrated in the following
sections.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 72 of 118

10.3.2 Untimed Mode-based Adaptive Process

Figure 36b proposes the structure for the HetSC specification of a mode-based Adaptive
Process (mHAP).

mAP

i1

in

sm

o

mode

i1

in

sm f

pm

a) b) mAP with exclusive wrapper module c)

m1

m2

m3

m4

m1

m2

m3

m4

mode
adaptation

input

mode

f

Figure 36. Specification in HetSC of the mode-based Adaptive Process.

As can be seen, there can be a mode parameter updated at each adaptation or the mode input
can be directly read for it. In any case, the functionality to be computed is determined by the
mode read. Such functionality can be encapsulated in methods (represented as black dots
within the module class in Figure 36) or C functions which are visible, thus within the scope
of the mHAP. Each functionality (or computational mode) to be executed is associated to a
discrete countable mode.

When to use it:

The mHAP is suitable when the set of computational modes is bounded, thus ranged
by a finite countable type, i.e. an unsigned int C type. With respect to the paHAP, mHAP
advantage is that it does not require the structure of the computations associated to each mode
to be the same. To the contrary, each computational mode can present a very different
computation structure. Each of those computation structures can be wrapped in a specific
(C/C++) function.

A typical case could be switching between a LPF and a HPF M-order filtering, where,
in both cases, the order and coefficients of the filter have been prefixed. In the mHAP, the
LPF and the HFP computation structure can be different. For instance, the LPF filter can be of
FIR type, while the HPF filter of IIR type. Another clear case can be an encrypter which can
employ very different crypto algorithms depending on the mode.

Design Pattern:

An untimed mHAP class can be declared as follows:

(1) class user_mHAP : public sc_module {

(2) public:

(3) sc_port <IF<T_1> > in_1;

(4) …

(5) sc_port <IF<T_N> > in_N;

(6) sc_port <IF<COUNTABLE_TYPE> > in_mode;

(7) sc_port < IF<T_O> > out;

(8) void root_function();

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 73 of 118

(9) SC_CTOR(user_mHAP) {

(10) SC_THREAD(root_function);

(11) }

(12) private:

(13) T_1 input_var1[N_in1], …, T_N input_varN[N_inM];

(14) T_O output_var[N_out];

(15) void f1(...);

(16) ...

(17) void fn(…);

(18) …

(19) };

As can be seen, the template is similar to the paHAP. It includes N input ports of an untimed
blocking interface and an internal root function. It also can include in the private part
variables for storing input and output variables, in case the internal computation needs it. The
main differences with respect to the paHAP pattern come on the adaptation input and on the
internal structure of the root_function. The adaptation input transfers a countable data type
(i.e. an unsigned int, and enum, etc) which represents the mode.

Then, the root function can be written as follows:

(1) void user_mHAP::root_function() {

(2) unsigned int i;

(3) while(true) {

(4) switch(in_mode->read()) {

(5) case 0: // mode 0

(6) // read input samples

(7) for(i=0;i<N_in1;i++) in_1->read(input_var[i]);

(8) ...

(9) for(i=0;i<N_inN;i++) in_N->read(input_varN[i]);

(10) f1(input_var1, …, input_varN, output_var);

(11) for(i=0;i<N_out;i++) out->write(output_var[i]);

(12) break:

(13) case 1: // mode 1

(14) // statement 1

(15) // statement 2

(16) // statement n

(17) break:

(18) case 2: // mode 2

(19) // f2

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 74 of 118

(20) // unfolded interleaved inputs, computation and outputs

(21) out->write(in1->read() + 1);

(22) out->write((in1->read() + in2->read()+1);

(23) break:

(24) …

(25) case Nmodes: // mode Nmodes

(26) out->write(fn(in1->read(),in2->read()));

(27) break:

(28) } // end switch

(29) } // end loop

(30) } // end root function

According to an untimed model, the root function specifies a strict order, where the adaptation
input is read first and once (mode input partition is thus 1). Later on, the mode is decoded to
perform the reading of the inputs, the computation and the writing the outputs in each case
branch.

This order between mode input read and regular inputs reading can be altered if each
computational mode to performs the same readings (which means same partition for each
regular input). The pattern previously shown shows a more general case where each branch
presents a different input partition. For instance, mode 0 computation involves reading N_in1
tokens from input in1, N_in2 tokens from input in2, etc to finally read N_inN tokens from
input N_inN. However, mode 2 computation reads two tokens from input in1 and one token
from input in2 to produce and write two output tokens.

Moreover, the pattern shows that in a general case, each more or branch computation does not
need to be encapsulated within a C function, as it is generically shown in mode 1 of mHAP
pattern. Therefore, it is possible to interlace the reading of inputs, computation and outputs
and even avoid intermediate variables for data read and output data. The mHAP pattern shows
such interlacing for mode 2, where the process first reads once input in1 to compute and write
the 1st output. Then a second read from input in1 and the first read from input in2 take place
after the first output write.

Mode computation can be encapsulated either in mHAP class methods (as it is shown by the
previous pattern) or be in external functions visible to the mHAP class. When the mode
computation is encapsulated within a function or within a class method, the internal variables
are needed to interface such method/functions with input/output ports. The following example
shows the declaration and implementation of a mHAP class using this approach.

As with the paHAP, the mHAP pattern previously presented admits several simplifications if
the number of inputs and/or the types of input and output data can be reduced.

Example:

The following example presents the declaration of an adaptive LPF based on the example of
section 9.3.

enum mode_t {BUTTER_M=0, CHEBY_M,BESSEL_M, ELLIPTIC_M};

template<class T, unsigned int N>

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 75 of 118

class adaptiveLPF : public sc_module {

public:

 sc_port <sc_fifo_blocking_in_if<mode_t> > in_mode; // mode input

 sc_port <sc_fifo_blocking_in_if<T> > in; // samples input

 sc_port <sc_fifo_blocking_out_if<T> > out; // samples output

 void root_function();

 SC_CTOR(adaptiveLPF) {

 SC_THREAD(root_function);

 }

private:

 void butter_LPF(T* in,T* out); // method m1

 void cheby_LPF(T* in, T* out); // method m2

 void bessel_LPF(T* in, T* out); // method m3

 void elliptic_LPF(T* in, T* out); // method m4

 mode_t mode;

 T input_var[N], output_var[N];

 …

};

where the root function has the next implementation:

template<class T, unsigned int N>

void adaptiveLPF<T,N> ::root_function() {

 unsigned int i;

 while(true) {

 in_mode->read(mode); // mode adaptation

 for(i=0;i<N;i++) in ->read(input_var[i]); // input samples

 switch(mode) { // evaluation

 case BUTTER_M: // mode 1

 case default:

 butter_LPF(input_var, output_var);

 case CHEBY_M: // mode 2

 cheby_LPF(input_var, output_var);

 case BESSEL_M: // mode 3

 bessel_LPF(input_var, output_var);

 case ELLIPTIC_M: // mode 4

 elliptic_LPF(input_var, output_var);

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 76 of 118

 }

 for(i=0;i<N;i++) out ->write(output_var[i]); // output samples

 }

}

In order to show other possible untimed implementations, in this example, a solution with
infinite HetSC FIFO channels will be shown. Then, the extract of the sc_main code where the
communication channels and the adaptive process is declared and instanced would be as
follows:

 …

 // channel declaration and instances

 uc_inf_fifo<float> mode_fifo(“mode_fifo”);

 uc_inf_fifo<float> in_fifo(“in_fifo”);

 uc_inf_fifo<float> out_fifo(“out_fifo”);

 // mAP declaration and instance

 adaptiveLPF<float,1000> adaptLPF;

 // mAP binding

 adaptLPF.in_mode(mode_fifo);

 adaptLPF.in(in_fifo);

 adaptLPF.out(out_fifo);

 …

Notice that, although infinite fifos are used, the N template parameter fixes the amount of
samples processed for each mode adaptation. Notice also that, as it happened in the software
implementation proposed for the mode-based AP (section 9.3), the executed mode function
directly relates the rest of inputs with the outputs, without further influence of the mode value.
The mode parameter is only used to select (decode) which function (or, equivalently, which
branch of inner code) to compute in the current evaluation.

10.3.3 Untimed Function-based Adaptive Process

Figure 37b proposes the structure for the HetSC specification of a function-based Adaptive
Process (fAP).

fAP

i1

in

sf

o

i1

in

sf f

Pf

a) b) fAP with exclusive wrapper module c)

fi
fi function

adaptation

input

f

Figure 37. Specification in HetSC of the function-based Adaptive Process.

It follows a similar idea as that developed for the SW implementation of a fAP, assuming that
the functionality to be executed by the HAP is out of its scope of visibility, that the set of

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 77 of 118

functions to execute can change in the future or that is unknown within the context of the
HAP. The only thing known is the prototype of the functions to be executed, which is fixed.
Then, the tokens which feed the adaptation input are function pointers, representing such
functions. This is a new feature incorporated to the HetSC methodology. The development of
HetSC channels was mostly intended for the transfer of data, (usually simple data structures),
which are consumed and transformed by processes. However, thanks to the generality of
HetSC channels (they are actually templates which can transfer abstract data types), they can
also be used to transfer the functionality to be executed in the shape of function pointers.

When to use it:

The fAP is useful, when, as with the mHAP, the structure of the different computations
performed among adaptations is different, and furthermore, the set of different functionalities
performed among adaptations is undetermined, since it comes from the environment or it
could be changed during run time (thus it cannot be characterized by a finite countable type,
i.e. an unsigned int). Then an fHAP can be reused, while the mHAP would require an
extension to cope with the new computational modes.

A typical case can be a process that can dynamically get updates, for instance of a routing
algorithm, or other kind of algorithm which could be improved in the future, etc…The new
functionality could be provided by dynamic libraries or libraries which can be updated or
added during run-time.

Design Pattern:

An untimed fHAP class can be declared as follows:

(1) class user_fHAP : public sc_module {

(2) public:

(3) sc_port <IF<T_1> > in_1;

(4) sc_port <IF<T_2> > in_2;

(5) …

(6) sc_port <IF<T_N> > in_N;

(7) sc_port <IF<FPTR> > in_function;

(8) sc_port < IF<T_O> > out;

(9) void root_function();

(10) SC_CTOR(user_fHAP) {

(11) SC_THREAD(root_function);

(12) }

(13) private:

(14) FPTR fp;

(15) T_1 input_var1[N_in1], T_2 input_var1[N_in2], …, T_N input_var[N_inN];

(16) T_O output_var[N_out];

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 78 of 118

(17) …

(18) };

The root function can be implemented as follows:

(1) void user_fHAP::root_function() {

(2) unsigned int i;

(3) while(true) {

(4) in_function->read(fp); // function adaptation

(5) for(i=0;i<N_in1;i++) in_1->read(input_var[i]); // input samples

(6) ...

(7) for(i=0;i<N_inN;i++) in_N->read(input_var[i]);

(8) fp(N_in1, input_var1,

 N_in2, input_var2,...,

 N_inN, input_varN,

 N_out, output_var); // evaluation

(9) for(i=0;i<N;i++) out->write(output[i]); // output samples

(10) }

(11) }

FPTR stands for the type of function pointer to be transferred through the adaptation input
port. After each adaptation, fp is updated with the incoming read function pointer, which
points a function which can be out of the scope of the fHAP instance. FPTR prototype fixes
the interface of the inner computation performed by the fHAP. This, in time fixes the
expected input ports and input partitions. It also demands the intermediate input_var and
output_var variables to interface input/output ports with the inner function call via fp.

As in sections 8.3.1 and 8.3.2, simplifications on the number of inputs and on the output port
types can be done.

Example:

Following, a HetSC example based on the example of section 9.4 is presented. Now, the
adaptiveLPF class defined by the user admits the adaptation of an unbounded number of
types of LPF filtering, whenever all of them are encapsulated within a function of the type
void LPF_fil_fun(unsigned int N, T *in, T *out);, where T stands for the data type of the
samples filtered.

template<class T> void (*FPTR) (T* in,T* out);

template<class T, unsigned int N>

class adaptiveLPF : public sc_module {

public:

 sc_port <uc_arc_cons_if<FPTR> > in_ fun; // function input

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 79 of 118

 sc_port <uc_arc_cons_if <T> > in; // samples input

 sc_port <uc_arc_prod_if< T> > out; // samples output

 void root_function();

 SC_CTOR(adaptiveLPF) {

 SC_THREAD(root_function);

 }

private:

 FPTR fun;

 T input_var[N], output_var[N];

 …

};

where the root function has the next implementation:

template<class T, unsigned int N>

void adaptiveLPF ::root_function() {

 while(true) {

 in_fun->read(fun); // functionality adaptation

 in->full_read(input_var); // input samples

 fun(N, in_var, out_var); // computation

 out->full_write(output_var); // output samples

 }

}

Then, each function pointer transferred through the adaptation input can address a function of
the library of LPF filter functions declared in section 9.4. If this library is extended or
enhanced with a new one, then, this template can still be used, whenever the new filter
functions fulfil the same prototype.

An extract of the code in charge of declaring and instancing the fAP and the channels which
connect it with the rest of the specification is shown:

 …

 // channel declaration and instances

 uc_arc<1,1,FPTR > fun_arc(“fun_arc“);

 uc_arc<N,N,float> in_arc(“in_arc“);

 uc_arc<N,N,float> out_arc(“out_arc“);

 // fAP declaration and instance

 adaptiveLPF<float,1000> adaptLPF;

 // fAP binding

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 80 of 118

 adaptLPF.in_fun(fun_arc);

 adaptLPF.in(in_arc);

 adaptLPF.out(out_arc);

 …

Notice that this adaptive process is written under a HetSC SDF MoC. The HetSC specification
of the fAP uses accesses to uc_arc channels with equal input and output rates (1 for the
adaptation input, which reads the function pointer of the next function to be evaluated, and N
for the input and output arcs). Thus, in this example, the fAP is actually a node of a HetSC
SDF graph. In this case, the root function does not have to include loops for reading input data
and write output data thanks to the full_read and full_write methods provided by the uc_arc,
which perform the transfer in terms of the consuming and producing rates.

10.3.4 Untimed Self-Adaptive Process

Once the specification of untimed paHAPs, mHAPs and fHAPs has been shown, the
specification of self-adaptive processes in untimed domain is depicted in Figure 38b. As in
ForSyDe, the sAP in HetSC, that is, the sHAP consists in a process network composition.
Such composition includes one of the previously shown HAPs and an additional SystemC
process, the feedback or agent process (aP), in charge of deciding the adaptation. The agent
process reads through feedback channels the necessary information to calculate the data for
the adaptation input. In the general case, this information can be taken from the input and
from the output of the HAP. In the Figure 38b, the adaptive process is a mHAP. Then, the
feedback/agent process generates a single token which represents the next working mode,
transferred through a channel proper of an untimed MoC.

i1

in

o pa

a)

HAP

b)

m

pc

c)

m

f

aP

Figure 38. Specification in HetSC of the self-Adaptive Process.

In the case of Figure 38b, notice that the HAP has to retransmit the feed-backed input and
output data tokens. For it, it also needs a new channel instance for each feed-backed input and
output. This is because in the untimed domains of HetSC reads are consuming. However, in
the correspondent ForSyDe metamodel, in Figure 38a, the same ForSyDe signal can be
“sampled” by the correspondent untimed ForSyDe process as many times as desired within
the same ForSyDe evaluation cycle.

A simplification where the feedback process disappears has been represented in Figure 38c.
There, the evaluation of the AP generates, as well as the outputs, the next adaptation data. The
black point represents the function in charge of calculating the next adaptation variable (a
mode variable in the case of the Figure 38c). As it was seen in section 9.6, the cost of this
structure in a software implementation was that the calculation of the next adaptation variable
is sequentially added to the output evaluation time. However, this structure is efficient in

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 81 of 118

terms of saving inter-process communication. In adaptive functionalities where there is no
dependency between output calculation and the calculation of the next adaptation data, the
Figure 38b is able to capture such concurrency and facilitates later the generation of
concurrent SW. Its cost is the necessary inter-process communication that is related to the
time consumption of system calls for the inter-thread communication associated to the
software implementation, shown in section 9.6.

When to use it:

The sAP is useful when the adaptive object also includes the functionality in charge of
deciding next adaptation. This matches the most extended notion of adaptive system in a
software context.

10.4 Patterns for Synchronous HAPs

From the synchronous HAP structures shown in section 10.2.2 and the description of the
parameter-based, mode-based and function-based patterns applied to untimed HAPs shown in
section 10.3, the user can foresee a regular building of the different types of general patterns.
Because of this, these sections will limit to present the pattern associated to each case and to
highlight the main differences with respect to previous patterns.

10.4.1 Clocked Synchronous HAPs (CS-HAPs)

CS-paHAP:

(1) class user_CS_paHAP : public sc_module {

(2) public:

(3) sc_in <bool > in_clk;

(4) sc_in <T_1 > in_1;

(5) …

(6) sc_in <T_N > in_N;

(7) sc_in <T_P > in_param;

(8) sc_out < T_O > out;

(9) void root_function();

(10) SC_CTOR(user_CS_paHAP) {

(11) SC_THREAD(root_function);

(12) sensitive << in_clk.pos();

(13) }

(14) private:

(15) T_P param;

(16) T_O output_var;

(17) void f_param(...);

(18) ...

(19) };

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 82 of 118

The clocked synchronous patterns proposed include SystemC ports (sc_port) enclosing
SystemC signal interfaces (sc_signal_in_if, sc_signal_out_if¸…), or equivalently their related
specialized ports (sc_in and sc_out). An input port common to all the CS templates and
already graphically reflected in Figure 33 is the clock input port, of sc_in<bool> type. The
rest of the template declaration is similar to the untimed paHAP declaration.

As it was mentioned, in section 10.2.2, the input and output partitions of CS HAPs are 1. This
is coherent with the usage of signal input and output ports, which only let read/write a data
unit at each clock cycle. An advantage is that the input can be sampled as many times as
desired.

The following pattern for the coding of the root_function is provided for the case of handling
single adaptation parameter of T_P type.

(31) void user_CS_paHAP::root_function() {

(32) while(true) {

(33) wait();

(34) param = in_param->read();

(35) f_param(param, in1->read(), …, inN->read(), output_var);

(36) out->write(output_var);

(37) } // end loop

(38) } // end root function

The f_param method encloses a parameterizable computation structure. As in the untimed
paHAP case, such computation could be enclosed also as a function external to the
user_CS_paHAP class or unfolded in a sequence of statements within the root_function. The
usage of buffering variables for the inputs has been omitted since, at a given cycle, they can
be read as many times as wanted. Another difference with regard to the untimed patterns is
the wait statement in the root_function and its correspondent sensitive statement in the HAP
declaration. The wait statement blocks functionality till the next cycle. Summarizing, the
CS_paHAP is basically another clocked synchronous process, with a style closer to HW
description, but admitting a SW implementation, as it will be shown in section 6.

If the HAP template has to handle several parameters, then T_P can be a complex type (i.e.,
an array). An alternative is to use the following pattern for the root function:

(1) void user_CS_mHAP::root_function() {

(2) unsigned int i;

(3) while(true) {

(4) for(unsigned int i=0;i<N_p;i++) {

(5) wait();

(6) param[i] = in_param->read();

(7) }

(8) f1(param, in1->read(), …, inN->read(), output_var);

(9) out->write(output_var);

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 83 of 118

(10) } // end loop

(11) } // end root function

In this case, several N_p cycles are taken in order to get the adaptation parameters. The last
read is used to compute and write to the output. This pattern admits other possibilities by
including wait statements, for instance, between the last read and computation and between
computation and output write.

CS-mHAP:

(1) class user_CS_mHAP : public sc_module {

(2) public:

(3) sc_in <bool > in_clk;

(4) sc_in <T_1 > in_1;

(5) …

(6) sc_in <T_N > in_N;

(7) sc_in <COUNTABLE_TYPE > in_mode;

(8) sc_out < T_O > out;

(9) void root_function();

(10) SC_CTOR(user_CS_mHAP) {

(11) SC_THREAD(root_function);

(12) sensitive << in_clk.pos();

(13) }

(14) private:

(15) T_O output_var;

(16) void f1(...);

(17) ...

(18) void fn(…);

(19) …

(20) };

Where the root_function can be coded as follows:

(12) void user_CS_mHAP::root_function() {

(13) while(true) {

(14) wait();

(15) switch(in_mode->read()) {

(16) case 0: // mode 0

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 84 of 118

(17) // read input samples

(18) f1(in1->read(), …, inN->read(), output_var);

(19) out->write(output_var);

(20) break:

(21) case 1: // mode 1

(22) // statement 1

(23) // statement 2

(24) // statement n

(25) break:

(26) …

(27) } // end switch

(28) } // end loop

(29) } // end root function

CS-fHAP:

(1) class user_CS_fHAP : public sc_module {

(2) public:

(3) sc_in <bool > in_clk;

(4) sc_in <T_1 > in_1;

(5) …

(6) sc_in <T_N > in_N;

(7) sc_in <FPTR > in_function;

(8) sc_out < T_O > out;

(9) void root_function();

(10) SC_CTOR(user_CS_fHAP) {

(11) SC_THREAD(root_function);

(12) sensitive << in_clk.pos();

(13) }

(14) private:

(15) T_O output_var;

(16) FPTR fp

(17) …

(18) };

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 85 of 118

Where the root function can be coded as follows:

(12) void user_fHAP::root_function() {

(13) while(true) {

(14) wait();

(15) fp= in_function->read(); // function adaptation

(16) fp(in1->read(),

 in2->read(),...,

 inN->read(),

 output_var); // evaluation

(17) out->write(output); // output samples

(18) }

(19) }

Again, as it happened with other CS HAP patterns, the code of the root function gets a bit
simpler due to the 1 partition of each input and output.

CS-sHAP:

Regarding the specification of self-adaptive CS-HAPs, the most important differences have to
do with the way the adaptive and agent functionality can be composed in the CS domain.
Figure 39 shows that the composition is simplified when the decision functionality, in charge
of calculating the adaptation parameters/mode/function, and the adaptive functionality are
split into different process, the agent process (aP) and the adaptive process (HAP). In effect,
as Figure 39b shows, the composition gets simpler than in the untimed case (Figure 38b),
since the adaptive process does not need to retransmit the data units, but they can be directly
sampled from the input and output signal ports. SystemC signal channels are only necessary
for transferring the parameters/mode/function from the agent process to the adaptive process.

i1

in

o pa

a)

HAP

b)

m

pc

c)

m

f

in_clk
in_clk aP

Figure 39. Self-Adaptive Clocked-Synchronous HAP.

Notice that in the scheme of Figure 39, the aP decides the adaptation for the next cycle, while
the HAP computation refers to the current cycle. If the adaptation has to refer to the current
cycle, the scheme of Figure 38c is recommended, where the decision is based on a
functionality which is computed before adaptive computation.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 86 of 118

10.4.2 Synchronous Reactive HAPs (SR-HAPs)

SR-paHAP:

(1) class user_SR_paHAP : public sc_module {

(2) public:

(3) sc_port <uc_SR_in_if<T_1> > in_1;

(4) sc_port <uc_SR_in_if<T_2> > in_2;

(5) …

(6) sc_port <uc_SR_in_if<T_N> > in_N;

(7) sc_port <uc_SR_in_if<T_P> > in_param;

(8) sc_out<T_O> out;

(9)

(10) void root_function();

(11) SC_CTOR(user_SR_paHAP) {

(12) SC_THREAD(root_function);

(13) sensitive << in_1;

(14) sensitive << in_2;

(15) …

(16) sensitive << in_N;

(17) sensitive << in_param;

(18) }

(19) private:

(20) T_P param;

(21) T_O output_var;

(22) ...

(23) };

The synchronous reactive patterns proposed use the specific input SR port of HetSC,
necessary to access through modules to uc_SR input channels able to trigger the HAP. As can
be appreciated, there is no kind of clock input. The SR-HAP is a reactive process (RP in the
SR domain of HetSC). Therefore, each input is able to trigger process computation at a given
time slot. The same happens with the adaptation input, which, at a given slot, can be the only
input triggering process. In such a case, as mentioned in section 10.2.2, only an adaptation
takes place at the given slot. That is, the SR-HAP does not make any regular computation at
such slot. Moreover, several consecutive adaptations at consecutive slots are possible.

The following pattern for the coding of the root_function is provided for the case of handling
single adaptation parameter of T_P type.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 87 of 118

(39) void user_SR_paHAP::root_function() {

(40) while(true) {

(41) SR_WAIT_POINT();

(42) if(in_param->written()) {

(43) param = in_param->read();

(44) }

(45) // check trigger combination

(46) if(in_1->written() && in_2->written() && ...&& in_N->written()) {

(47) f_param_N(param, in1->read(), …, inN->read(), output_var);

(48) }

(49) …// other trigger combinations

(50) } else if(in_1->written()) {

(51) f_param_1(param, in1->read(), output_var);

(52) }

(53) …

(54) } else if(in_N->written()) {

(55) f_param_N(param, inN->read(), output_var);

(56) }

(57) out->write(output_var);

(58) } // end loop

(59) } // end root function

As synchronous HAPs, and as happened with CS-HAPs, the input and output partitions of SR
HAPs are 1. This is coherent with the access to uc_SR channels, which only let read/write a
data unit at each clock cycle. In a similar way as CS-HAPs, uc_SR channels responsible for
the triggering of the reactive process can sampled as many times as desired. This helps to
simplify the coding of the root_function.

Notice that a non-strict reactive HAP requires several functional relations (represented as
several function calls in the pattern) to cover all the trigger combinations. This code gets
simpler in those cases where trigger combinations can be merged, and if old input values can
be used for the coding of the non-strict reactive HAP. The, following pattern for the root
function reflects this extreme:

(60) void user_SR_paHAP::root_function() {

(61) while(true) {

(62) SR_WAIT_POINT();

(63) if(in_param->written()) {

(64) param = in_param->read();

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 88 of 118

(65) }

(66) // update triggered inputs

(67) if(in_1->written()) {

(68) in_var1 = in1->read();

(69) }

(70) if(in_2->written()) {

(71) in_var2 = in2->read();

(72) }

(73) …

(74) if(in_N->written()) {

(75) in_varN = inN->read();

(76) }

(77) f_param_N(param, in_var1, in_var2, …in_varN, output_var);

(78) out->write(output_var);

(79) } // end loop

(80) } // end root function

An equivalent code to this could be done by directly accessing input ports, but in such a case
the SR HetSC check CHECK_OLD_VALUE_READ_UC_SR_CHANNEL must be disabled.

The SR-HAP can be also specified as a strict reactive process. This will be shown in for the
case of the SR-mHAP. Once the SR-paHAP has been shown, the rest of SR-HAP will follow
a similar variants as in the different cases of CS-HAPs.

SR-mHAP:

(1) enum mode_t {mode1, mode2, …modeN};

(2) class user_SR_mHAP : public sc_module {

(3) public:

(4) sc_port <uc_SR_in_if<T_1> > in_1;

(5) sc_port <uc_SR_in_if<T_2> > in_2;

(6) …

(7) sc_port <uc_SR_in_if<T_N> > in_N;

(8) sc_port <uc_SR_in_if<mode_t> > in_mode;

(9) sc_out<T_O> out;

(10)

(11) void root_function();

(12) SC_CTOR(user_SR_mHAP) {

(13) SC_THREAD(root_function);

(14) sensitive << in_1;

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 89 of 118

(15) sensitive << in_2;

(16) …

(17) sensitive << in_N;

(18) sensitive << in_m;

(19) }

(20) private:

(21) ...

(22) };

(23) void user_SR_mHAP::root_function() {

(24) while(true) {

(25) SR_STRICT_WAIT();

(26) switch(in_mode->read()) {

(27) case mode1:

(28) out->write(f1(in_1->read(), in_2->read(), …,in_N->read()));

(29) break;

(30) case mode2:

(31) out->write(f2(in_1->read(), in_2->read(), …,in_N->read()));

(32) break;

(33) …

(34) case modeN:

(35) out->write(f2(in_1->read(), in_2->read(), …,in_varN->read()));

(36) break;

(37) } // end switch

(38) } // end loop

(39) } // end root function

SR-fHAP:

(1) class user_SR_fHAP : public sc_module {

(2) public:

(3) sc_port <uc_SR_in_if<T_1> > in_1;

(4) sc_port <uc_SR_in_if<T_2> > in_2;

(5) …

(6) sc_port <uc_SR_in_if<T_N> > in_N;

(7) sc_port <uc_SR_in_if<FPTR > in_function;

(8) sc_out<T_O> out;

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 90 of 118

(9)

(10) void root_function();

(11) SC_CTOR(user_SR_fHAP) {

(12) SC_THREAD(root_function);

(13) sensitive << in_1;

(14) sensitive << in_2;

(15) …

(16) sensitive << in_N;

(17) sensitive << in_f;

(18) }

(19) private:

(20) FPTR fp;

(21) ...

(22) };

(23) void user_SR_fHAP::root_function() {

(24) while(true) {

(25) SR_STRICT_WAIT();

(26) fp= in_function->read();

(27) out->write(fp(in_1->read(), in_2->read(), …,in_varN->read()));

(28) } // end loop

(29) } // end root function

The implementation of the root_function for the non-strict case of the SR-fHAP must rely on
the old values of the inputs, since, otherwise, it would be necessary for the agent process to
predict the type of the next trigger combination in order to pass the suitable m-inputs function.

(with 1≤m≤N). Instead, it is assumed that the adaptation input will transfer N-input functions.
Then the root function would be coded as follows.

(30) void user_SR_fHAP::root_function() {

(31) while(true) {

(32) SR_WAIT_POINT();

(33) if(in_function->written()) {

(34) fp = in_function->read();

(35) }

(36) // update triggered inputs

(37) if(in_1->written()) {

(38) in_var1 = in1->read();

(39) }

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 91 of 118

(40) if(in_2->written()) {

(41) in_var2 = in2->read();

(42) }

(43) …

(44) if(in_N->written()) {

(45) in_varN = inN->read();

(46) }

(47) out->write(fp(in_var1, in_var2, …,in_varN));

(48) } // end loop

(49) } // end root function

Notice that in this patters it is assumed that the adaptation functions pass the output value as
the return value. The patterns are flexible in this sense. Notice also that, in case of having to
perform adaptation and computation at the same slot, adaptation takes place before
computation. Therefore, SR-HAP, CS-HAP and untimed-HAP patterns work in the same way
in this sense.

10.5 Patterns for process-based HAPs

This section presents how the different types of prAPs can be specified in SystemC. This is
considered a special case since it is a more complex concept which runs into some limitations
of SystemC for its specification. It is also special since it can lead to the interesting feature of
an adaptation involving a dynamic change of the current domain.

10.5.1 Process-based Adaptive Process

The prHAP enables the access of a different set of input channel accesses (potentially of
different types and with different partitions) after an adaptation. This follows the ForSyDe
formalism for the prAP, which enables the adaptation of process interface (as well as process
functionality).

In SystemC, a kind of “process interface” is not defined, however it can be considered to be
the set of input accesses performed by the processes (focusing on the input interface), and
which in a prAP can vary during run time. In the case of wrapping the HAP within a module
(as most of patterns shown till here) it also means the enabling changing the access to
different input ports.

An immediate approach to the ForSyDe formal concept of prHAP could be thought as an
adaptation of the process interface by substitution, which would enable the reuse of
specification resources. For instance, it could be thought that since some of the channels/ports
will not be accessed after a given adaptation, they could be removed and created or recovered
and bound again during simulation time if they have to be used again.

However, creation and destruction of such several SystemC elements, usually associated to
process interface, it is not possible during the simulation. In SystemC, channels and ports
cannot be dynamically (during simulation time) created and destroyed, but they are declared,
instanced and bound at elaboration time (before simulation start). An apparent alternative
could seem to perform the adaptation at a module instance level. That is, dynamically change

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 92 of 118

the module instance addressed and representing the prHAP and thus redoing its associated
bindings. However, again, SystemC handle module creation and binding in a static way
(SystemC module creation cannot be done within a process, thus at simulation time).

Therefore, the interface of the prAP in terms of the whole set of channels, ports and exports
accessed from the prHAP during the whole simulation has to be fixed in advance. In any case,
SystemC can be used for the specification of prHAPs, since the SystemC specification is not
the actual implementation. Quite the opposite, having all possible interfaces statically defined
at the beginning of the simulation can help to left clear the boundaries of the adaptation and
provide information to the implementation steps for getting and optimum result.

Therefore, the specification of prHAPs in SystemC is (and has to be) specified as a kind of
adaptation by selection [D11A]. Figure 40b sketches a feasible general structure for the
HetSC specification of a process-based Adaptive Process.

i1

in

spr

o ppr

a) prAP with exclusive wrapper module c)

process
adaptation

input

…

f f

ch1

ch2

chN

b) prAP

Figure 40. Specification in HetSC of the process-based Adaptive Process.

In this scheme, all the alternative sets of channels accessed after each adaptation have to be
instanced and bound at elaboration time. Then, each adaptation defines the set of channels
accessed. Then, it follows a similar idea as that developed for the SW implementation of a
prHAP.

In the case of using an exclusive wrapper module, similarly, ports are created and bound at
elaboration time. Therefore, the port interface of the prAP is fixed at elaboration time and
must cope with any access combination defined by each adaptation.

In some sense, the prAP means a generalization of the patterns previously shown for the case
in which an adaptation can mean not accessing every input port. This is specially useful in
untimed HAPs, where, without the ability to select the set of input ports/channels and each
input partition after one adaptation, the untimed HAP would be tied to scheme where would
be reading every input at fixed rates even if there is nothing useful to read.

The following pattern shows this case for two inputs prHAP which receives through the
adaptation input a structure with a mode parameter and the input partition for each input.
Thus, this is an extension of the mHAP case, which depending on the mode, reads different
inputs with a different input partition.

(1) enum mode_t {mode1, mode2,...};

(2) struct adapt_info_t {

(3) mode_t mode;

(4) unsigned int partition[N]; // partition of each input

(5) };

(6) class user_prHAP : public sc_module {

(7) public:

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 93 of 118

(8) sc_port <IF<T_1> > in_1;

(9) …

(10) sc_port <IF<T_N> > in_N;

(11) sc_port <IF<adapt_info_t> > in_process;

(12) sc_port < IF<T_O> > out;

(13) void root_function();

(14) SC_CTOR(user_prHAP) {

(15) SC_THREAD(root_function);

(16) }

(17) private:

(18) adat_info_t adapt_info;

(19) T_1 input_var1[MAX_N_in1], …, T_N input_varN[MAX_N_inN];

(20) T_O output_var[N_out];

(21) void f1(...);

(22) ...

(23) void fn(…);

(24) …

(25) };

(1) void user_mHAP::root_function() {

(2) unsigned int i;

(3) while(true) {

(4) adapt_info = in_process->read();

(5) switch(adapt_info.mode) {

(6) case 0: // mode 0

(7) // for instance, reads only from the first input

(8) for(i=0;i< adapt_info.partition[0];i++) in_1->read(input_var[0]);

(9) f1(input_var1, output_var);

(10) for(i=0;i<N_out;i++) out->write(output_var[i]);

(11) break:

(12) case 1:

(13) // for instance, reads only from the first input and N-th input

(14) for(i=0;i< adapt_info.partition[0];i++) in_1->read(input_var[0]);

(15) for(i=0;i< adapt_info.partition[0];i++) in_1->read(input_var[0]);.

(16) f2(input_var1, input_varN, output_var);

(17) for(i=0;i<N_out;i++) out->write(output_var[i]);

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 94 of 118

(18) break:

(19) case 2: // mode 2

(20) …

(21) break:

(22) …

(23) } // end switch

(24) } // end loop

(25) // end

This pattern can be obviously particularized to more simple cases, like for instance, assuming
that the same partition will be applied to every input at each adaptation.

Synchronous prHAPs eliminates the factor of input partitions from consideration, since, as
mentioned, they are 1 for every input. Therefore, the patterns already defined for synchronous
HAPs already cover the prHAP by selection, since there is no need to consider a case where
partition is transferred through the adaptation input. For instance, a mHAP can involved for
different modes reading different inputs. This will not involve the process blocking before
completing its computation for the rest of the cycle/slot in any of the synchronous cases, CS
and SR.

An interesting case is that of the heterogeneous prAPs, explained in the following section.

10.5.2 Heterogeneous prHAPs

Heterogeneous prHAPs are those prHAPs where adaptation involves change on the model of
computation. More specifically, the adaptation involves accessing different types of input
ports, and different paths within the reactive process, involving a change on the domain
(model of computation) after an adaptation.

When to use it

A potential application of this kind of HAPs is foreseen in less explored fields. For instance
Heterogeneous prHAPs could be used to specify, model, analyze and design systems which
capabilities for HW/SW context change. That is, systems where DRHW enable the same
piece of silicon to compute some software functionality at some time, while some hardware
functionality at other time. This systems would have an additional flexibility degree for its
design with respect to any software concurrent system (supporting SW context changes), or
DRHW (supporting HW context changes).

Design Pattern

Again, as untimed and synchronous prAPs, the specification requires static instantiation of the
input ports and channels accessed. The process will count with different execution paths
depending on the type of synchronization done. The adaptation will take place considering the
current domain the prAP is computing in. That is, if the prAP is within an untimed domain,
there must be a blocking synchronization with an “untimed” input channel (i.e. of fifo type),
to produce de adaptation. If the current domain were the CS one, the following clock event
will determine the next adaptation,

Example:

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 95 of 118

i1

i2

spr

o ppr

a) process

adapta tion

input

f

uc_inf_fifo1

uc_arc_1

b) prAP

uc_arc_2

m

p1

p2

p3

p4

Figure 41. This prAP changes the MoC after the adaptation.

The example is represented in Figure 41. The adaptation input transfers tokens of
adapt_info_type type, a struct whose members are a function pointer, a set of parameters
which set the input partition (number of tokens to read from each input), and the output
partition (number of tokens generated for the output), and a mode variable which defines
which channels are read and written in the computation. Actually, this example reflects the
building of a prHAP as a combination of the paHAP, mHAP and fHAP, where the adaptation
information has been multiplexed in the same adaptation inputs through the adapt_info_type.
Other equivalent combinations can be found. The question is that each adaptation can modify
which input and output channels are accessed and the number of tokens read from each input
channel and written to each output channel in the next evaluation. Moreover, the MoC varies
in this example since one evaluation the process can perform an access to one type of channel
(i.e. to some uc_inf_fifo channels) while in the next evaluation, it accesses other type of
channels (i.e. to some uc_arc channels) are done. Thus, while in the former case, the prHAP
can be part of a Kahn process network (KPN MoC), in the second case can be considered as a
node of SDF domain.

Following, the code of a simpler example, based on the example of section 9.5 is provided.
This example presents combines a change of the input and output partition and of the function
to be executed.

template<class T> void (*FPTR) (T* in,T* out, unsigned int N);

struct adapt_struct {

 FPTR fun;

 unsigned int N;

};

template<class T>

class adaptiveLPF : public sc_module {

public:

 sc_port <sc_fifo_blocking_in_if<adapt_struct> > in_as; // adaptation input

 sc_port < sc_fifo_blocking_in_if <T> > in; // samples input

 sc_port < sc_fifo_blocking_in_if <T> > out; // samples output

 void root_function();

 SC_CTOR(adaptiveLPF) {

 SC_THREAD(root_function);

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 96 of 118

 }

private:

 adapt_struct adapt_var;

 T *input_var,* output_var;

 …

};

where the root function has the next implementation:

template<class T>

void adaptiveLPF ::root_function() {

 while(true) {

 as->read(adapt_var); // functionality adaptation

 reallocate(input_var, adapt_var.N*sizeof(T)); // reallocates room

 reallocate(output_var, adapt_var.N*sizeof(T)); // for inner vars

 for(i=0;i< adapt_var.N;i++) in_fifo->read(input_var[i]); // input samples

 adapt_var->fun(adapt_var.N, input_var, output_var,); // computation

 for(i=0;i< adapt_var.N;i++) out_fifo->write(output_var[i]); // output samples

 }

}

where the reallocate(T* p, unsigned int M) function template ensures the allocation of M
bytes addressed from p pointer. Depending on the dependencies among input and output
tokens, the reallocation can be optimized. For instance, let assume that the functions passed
produce one token per each input token. Then, the root function can be written as follows:

void adaptiveLPF ::root_function() {

 input_var = new T;

 output_var = new T;

 while(true) {

 as->read(adapt_var); // functionality adaptation

 for(i=0;i< adapt_var.N;i++) {

 in_fifo->full_read(input_var); // input sample

 adapt_var->fun(input_var, output_var); // computation

 out_fifo->write(output_var[i]); // output sample

 }

 }

}

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 97 of 118

These degrees of flexibility keep coherence with all the possibilities contemplated by the
prAP in [D11A]. Since the prAP can change process constructors in the adaptation, the input
and output partition, the number of input and output signals and even the MoC could change
after the adaptation.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 98 of 118

11. HetSC Templates for Adaptive Processes

In the previous section, guidelines and examples for the specification of APs in SystemC have
been given. Such guidelines include design patterns for supporting an abstract modelling of
adaptive processes, which in time has a direct implementation as adaptive software by means
of the SWGen methodology.

Additionally, the HetSC library has been extended to provide a set of SystemC templates (and
their related guidelines) for the specification of HAPs. These are the HetSC Adaptive Process
(HAP) templates. Using these templates provides the SystemC user:

• A mean to capture an adaptive process quickly and in a compact way. The user does
not need to code the adaptive class under the patterns defined in section

• Fast reuse of adaptive sequential C/C++ code with a clean decoupling between the
C/C++ part and the SystemC constructs, which provide concurrency, heterogeneity
and adaptivity.

• Support of eSW implementation by means of SWGen.

HetSC has been extended with the HAP templates summarized by Table 2:

Description

1-output, Tout type [=Tin]

1-adapt-in, Tada type [=Tin]

Domain HAP

Template

(class

name) inputs partition Additional features

paAP 1 ri, ai, o,

paAPn N ri,ai,o Let state preservation

mAP 1 ri,o

fAP 1 ri,o

Untimed

prAP 1 ri,o Adapt ri at each adaption

sr_mAP1 1 1,1,1 Synchronous

Reactive
sr_mAP2 2 1,1,1 Tin1, Tin2

cs_mAP1 1 1,1,1 1-input

cs_mAP2 2 1,1,1 Tin1, Tin2

Clocked

Synchronous

cs_mAPn N 1,1,1 Same input type

Table 2. HAP templates included in the HetSC v1.3.

The usage of the HAP templates requires an identification of the specific adaptation patterns
comprised in Table 2. As can be seen, these templates work for one output and one adaptation
input port. Specific data types can be transferred for each one, while the default type is the
same as the regular input. Then different templates are provided depending on the number of
inputs, type of adaptation information and domain. Two input templates can deal with
different input data types, while N-input templates require handling the same input data type.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 99 of 118

Untimed HAP templates let in any case specify different partitions for each regular input, for
the adaptation input and for the output. These partitions are fixed for the adaptation (thus
mostly suitable for specifications under a static data flow domain). An exception is the prAP
case, since the prAP template let changing the partition among adaptations.

For cases not covered by this table (for instance, an adaptive process of two inputs handling
different data types) the user has to rely on the guidelines and patterns provided in the
previous chapter. HAP templates have also some requirements on the function prototypes
passed to the HAP templates which can be easily overcome by means of wrapping functions,
as will be explained.

Following, the structure of the documentation of the HAP templates will be explained by
means of one representative template. This includes showing the template declaration as it
will be found in the HetSC associated documentation, its usage and results of a related
example. Additional details will be given for other HAP templates. Some details about the
internal implementation of the HAP templates will be given, which is actually not part of the
HetSC documentation of the templates.

11.1 Using a HAP template

The first information which is given to the user about a HAP template is its public declaration.
For instance, for an untimed parameter-based HAP of N_inputs inputs, the paAPn template is
available. Its declaration is as follows:

template<class FPTR, class Tin, unsigned int N_inputs=1,

 class Tout=Tin, class Tpar=Tin, , class Tout=Tin >

class paAPn : public sc_module {

public:

 sc_port <sc_fifo_blocking_in_if<Tpar> > in_param;

 sc_port <sc_fifo_blocking_in_if<Tin> > in[N_inputs];

 sc_port < sc_fifo_blocking_out_if< Tout> > out;

 paAPn(sc_module_name name,

 FPTR fp,

 unsigned int Nin[N_inputs],

 unsigned int Nparams=1,

 Ts *state= NULL);

 SC_HAS_PROCESS(paAP);

private:

 …

};

Notice that the user actually does not need to know the private members of the class, not even
defining this class. What the user needs to know this template exists, its limitations and
applicability and public declaration. This template enables the specification of untimed (static
data flow) parameter-based APs of several inputs, with recovering of state among adaptations.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 100 of 118

The template also assumes a structure for the parametric function which is associated to it as
well as for the input data which process and output data which returns. Specifically, for the
case of the paAPn template, the structure of the function is assumed to be the following one:

// void param_f_name()(

// unsigned int Nin[],

// Tin **in,

// unsigned int Nout,

// Tout *out,

// unsigned int Nad,

// Tparam *in_param,

// Ts *in_state);

That is, a function which receives as parameters an array Nin[N_inputs], with the partition of
the regular inputs; a pointer to the array of input variables (which are in time arrays for the
each specific input partition); the output partition; a pointer to the output variable; the
partition of the adaptation input; a pointer to the input parameter; and finally, a pointer to a
state variable.

Following the usage of this template is shown with an example available in the HetSC v1.3
library. First, a snippet of the sc_main function is shown:

 …

 // Initial state for the first call to fir_fil_5_wrap call

 float state[5] = {0.0,0.0,0.0,0.0,0.0}; // state variable plus initial state

 unsigned int Nin[1] = {100}; // 100 samples from the first input

 // paAP declaration and instance

 paAPn<FLOAT_FILP, float> ap("ap",

 fir_fil_5_wrap,

 Nin,

 100, // Nout

 6, // a FIR 5th order filter needs 6 parameters!

 state);

 …

In this piece of code, an instance named ap of the paAPn template is being declared and
created. As it is shown, although the template supports a very generic use, it can be simply
used for instancing a more specific HAP. Specifically, the template is being used to instance
an adaptive process which performs a 5th order FIR filtering and which is able to adapt its 6
filtering coefficients (bk) after every 100 processed samples. The instantiation has been
graphically represented in Figure 42, where the paAPn template is used to instance a HAP of
a single input (and a single output and adaptation input). All the fifo blocking input and output
interfaces handle the same data type. Because of this, the template instance can be in this case
very simplified, by selecting Tin=float, while the rest of template values remain at their

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 101 of 118

default values (N_inputs=1 and Tout=Tpar=Ts=Tin, that is, float for every of them). The first
parameter passed to the template is the function pointer which tells the template the specific
prototype of parametric functionality associated to it. In this example, the specific declaration
done, was the following one:

typedef void (*FLOAT_FILP) (unsigned int *,float **,unsigned int,float *,unsigned

int,float *, float*);

which, as can be seen, suits to the basic structure of the prototype required by this template.

paHAPn

p1

......

pn

instance

ap

p1

...

P6

sc_port<sc_fifo_blocking_in_if<Ti> > sc_port<sc_fifo_blocking_out_if<Tout>
>

sc_port<sc_fifo_blocking_in_if<Tpar>
>

state Ts

in[0]

in[N_inputs]

… out

in_param

Nin[0]

Nin[N_inputs]

Nad

Nout
in[0]

fir_fil5_wrap

out

in_param

s1
...

s5

(float)

(float)

(float)

(float)

Figure 42. Instantiation of the paHAPn template.

As can be see, the instantiation of the template, and it is represented in the right hand side of
Figure 42, makes a static association or binding between the HAP template and the specific
functionality, in the shape of a C/C++ function (fir_fil5_wrap in this case). In this way, a
clean decoupling between the pure functional code and the SystemC code in charge of
providing structure, concurrency, heterogeneity and adaptivity to the specification is got.

The HAP template instance has to be bound to the modules of the rest of the specification. In
this case, since it is an untimed HAP, the example builds up a bounded Kahn process network.
The next code snippet shows the binding statements of the template (also represented in
Figure 43), where, param_fifo, samples_fifo and out_fifo are instances of fifo channels (the
example has been checked for both uc_fifo HetSC channels and sc_fifo standard channels).

 ap.in_param(param_fifo);

 ap.in[0](samples_fifo);

 ap.out(out_fifo);

ap

p1

...

P6

in[0]

fir_fil5_wrap

out

in_param

s1
...

s5

(float)

(float)

(float)

(float)

out_fifo

out_fifo

param_fifo

cons prod

Figure 43. Binding of the paHAPn template instance to the rest of the specification.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 102 of 118

In order to illustrate the most complicated usage these templates can require and how it is
easily solved, the example assumes that the template is reusing a kind of filters library, which
includes a function to perform a 5th order FIR filtering with the following declaration:

void fir_fil_5(unsigned int N,

 float *coeff,

 float *output_var,

 float *input_var,

 float state[5]);

As can be seen, this function, does not strictly matches the generic function prototype
demanded by the HAP template paAPn. This is easily solved by means of a wrapping
function, whose pointer is the parameter finally passed to the HAP template instance.
Specifically, for this example, the wrapping function has the following coding:

void fir_fil_5_wrap(unsigned int *Nin,

 float **input_var,

 unsigned int Nout,

 float *output_var,

 unsigned int Nparam,

 float *coeff,

 float *state

) {

 fir_fil_5(*Nin,coeff,output_var,*input_var, state);

}

In this case, the wrapping function provides a general prototype to a more specific
functionality (since the library function is written to work for a fix partition for the parameters
input, and variable, but equal partitions for the input and output). In other cases, the wrapping
function can simply have to adapt the type of parameter passing, for instance, convert a pass-
by-return-value in a pass-by-pointer, as the HAP template requires for the output.

The HAP template of this example also lets specify state preservation among adaptations. As
can be seen, the template instance ap has been provided with an initialized state variable (an
array of 5 units of Ts=float type), which represents the memory and initial state of the
adaptive filter. In this way, the simulation of this example provides the result of Figure 44.

In the upper part of Figure 44, the input to the ap instance of the HAP, consisting in Gaussian
noise, is represented. What is not represented is the input to the adaption input. The example
provides different sets of adaptation parameters, specifically the b0-b5 FIR parameters
corresponding to a:

• 1st adaptation : a null filter (b0 = b1 = b2 = b3 = b4 = b5 = 0.0)

• 2nd adaptation : a bypass filter (b0 = 1.0, b1 = b2 = b3 = b4 = b5 = 0.0)

• 3rd adaptation : a LPF filter of fc=0.5

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 103 of 118

• 4th adaptation : a LPF filter of fc=0.2

• 5th adaptation : a LPF filter of fc=0.01

A1 A2 A3 A4 A5

Figure 44. Results of the paAPn example delivered in the HetSCv1.3 library.

As an untimed HAP, each adaptation required to pass an update the set of 6 bk coefficients. It
can be appreciated that, after the 5th adaptation, the HAP instance no longer produce output
tokens since it does not receives further adaptation parameter, which blocks current
computation, this further production of output data.

The effect of the state context can be notice when the results of Figure 44 are contrasted with
the results when the paAPn template is not provided with a state (shown in Figure 45).

A1 A2 A3 A4 A5

Figure 45. Results of the paAPn example without using state.

In Figure 45, the glitches to 0 after each adaptation contrast with the smooth transitions given
in the results of Figure 44. Obviously, the need for state depends on the application.
Applications can be found where holding state is not necessary. In such a case, the instance of
the HAP template becomes even simpler. In the case of the paAPn template, would be as
follows:

 // paAP declaration and instance

 paAPn<FLOAT_FILP, float> ap("ap",

 fir_fil_5_wrap,

 Nin,

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 104 of 118

 100, // Nout

 6); // a FIR 5th order filter needs 6 parameters

With this invocation, the template adopts the NULL value for the state variable pointer by
default and then, internally, the template will not make any usage of it.

For an example like this, less general HAP template can be used, for instance, the paAP
template, which works for a single input and do not keep state. Then the usage of the HAP
template gets a bit simpler. For instance, the instantiation will only require to pass an
unsigned int variable to the input partition parameter (instead of an input partition array), and
will be only necessary to bind an input port in (instead having to bind each in[i] port).

The usage of other untimed HAP templates will be, in general, quite similar, with some
peculiarities regarding the type of adaptation. For instance, the following code snippet
illustrates the instantiation of a single-input untimed mHAP template.

 typedef void (*FLOAT_FILP) (unsigned int,float *,unsigned int,float *);

 FLOAT_FILP modfun_array[N_MODES]= {fir_fil_5_lpf_wrap, cheb5_hpf_fil_wrap};

 mAP<FLOAT_FILP,float> ap("ap", // Name for the paAP instance

 100, // # of input samples per adaptation

 100, // # of output samples per adaptation

 2, // # of modes

 modfun_array); // mode functions array

As can be seen, the instantiation of this template requires the static association of a set of
function pointers (in the shape of an array of function pointers) to the template instance. In the
most general case, as this example illustrates, these function pointers address wrapping
functions. The template also requires to be passed by constructor the number of modes. Then,
the mAP template will present an adaptation input port of a fixed data type (which contrast
with the parameterizable data type of the parameter input of the paAP templates).

As well as these peculiarities, other differences among HAP templates fit to those remarked in
chapter 10 when guidelines comprising the intended usages and shapes of the design patterns
have been explained. For instance, the mHAP is suitable when the set of associated
functionalities, even sharing the same prototype, enclose different computation structures (in
contrast to the paHAP templates, more useful when having the same parameterizable
computation structure. For instance, in this mHAP usage example, comprised within the
HetSCv1.3 library, under the first mode (mode 0) the HAP works as a low-pass filter (LPF),
while the second mode (mode 1) performs as a high-pass filter (HPF). Initially, this could
have been solved by means of a paHAP if it is decide to apply a FIR filtering in both modes.
However, in this example, the LPF filtering is done by means of a FIR filtering, while the
HPF filtering is done by means of an IIR (infinite impulse response) filter. The algorithms in
each case present several structural differences, and, within the C/C++ library are each one
encapsulated in a different function, fir_fil_5 and cheb5_hpf_fil, which in time are
encapsulated in their corresponding wrapping functions, fir_fil_5_lpf_wrap and
cheb5_hpf_fil_wrap.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 105 of 118

A1 A2 A3 A4 A5

Figure 46. Results in the example of mode adaptation.

Figure 46 represents the results of the example of mHAP usage.

To finish this subsection, the declaration of a synchronous HAP template will be shown and
its usage illustrated. Specifically, the declaration of the clocked synchronous template for a
case of two inputs of different types, cs_mAP2, is shown following:

template <class FPTR, class Tin1, class Tin2=Tin1, class Tout=Tin1>

class cs_mAP2 : public sc_module {

public:

 sc_in<bool> in_clk;

 sc_in<unsigned int> in_mode; // Input mode

 sc_in<Tin1> in1;

 sc_in<Tin2> in2;

 sc_out<Tout> out;

 void root_function();

 SC_HAS_PROCESS(cs_mAP2);

 cs_mAP2(

 sc_module_name name,

 unsigned int N_mod, // Number of modes

 FPTR *mod_fun_array // array of mode-functions of two inputs

);

private:

 …

};

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 106 of 118

As can be seen , this template handles a signal ports and a clock input port. The usage and
instantiation of the template becomes even simpler that in the untimed case, since the input
and output partitions are 1 for all the inputs (regular and adaptation inputs) and for the output.
This does not remove the possibility of transferring complex and/or big structures of data
among adaptations, since the type transferred at each input is generic. In order to facilitate the
specification task, the HetSC library has been extended to offer the uc_burst_t class. The
declaration of this class is as follow:

class uc_burst_t {

public:

 T *data;

 unsigned int length;

 uc_burst_t();

 ~uc_burst_t();

 uc_burst_t(unsigned int N);

 uc_burst_t(const uc_burst_t<T> &brst); // copy constructor

 // Assignment

 void operator=(uc_burst_t<T> brst);

 bool operator==(uc_burst_t<T> &brst);

};

The uc_burst_t class comes also with an overload of the “<<” operator and of the sc_trace
function for this class. This class let declare burst of data of N tokens and makes it possible to
declare and create an instance of the cs_mHAP template like the following one (included also
in the examples of the HetSCv1.3 library):

typedef uc_burst_t<unsigned char> (*BURST_CRYPTP) (uc_burst_t<unsigned char>,
const char *);

BURST_CRYPTP mod_cryptfun_array[N_MODES]= {crypt1_wrap, crypt2_wrap};

cs_mAP2<BURST_CRYPTP, uc_burst_t<unsigned char> , const char *>

adapt_encrypt("adapt_encrypt",

 2, // # of modes

 mod_cryptfun_array);

This sentence declares a clocked synchronous mode-based adaptive encrypter. This adaptive
encrypter read at each cycle a burst of data from its first input and the crypto-key from its
second input and produces a result by using one of two possible crypto-algorithms. The

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 107 of 118

selection of the specific crypto algorithm applied comes from the value read at the adaptation
input at the given cycle.

A code snippet of the binding of this template instance is given as follows:

 adapt_encrypt.in_clk(sysclk);

 adapt_encrypt.in_mode(mode_crypt_sig);

 adapt_encrypt.in1(data_crypt_in1_sig);

 adapt_encrypt.in2(data_crypt_in2_sig);

 adapt_encrypt.out(data_decrypt_in1_sig);

where sysclk is a sc_clock object, mode_crypt_sig is a sc_signal<unsigned int> channel,
data_crypt_in1_sig and data_decrypt_in1_sig are sc_signal<uc_burst_t<unsigned char> >
channel, and data_crypt_in2_sig is a sc_signal<const char*> channel.

Figure 47 represents the example provided by the library.

adapt_encrypt

in1

crypt1_wrap

out

in_mode
m

(sc_signal)

mode_sig

cons
prod

crypt2_wrap

sysclk

in2
(sc_signal)

(sc_clock)

adapt_decrypt

in1

decrypt1_wrap

out

in_mode
m

(sc_signal)

(sc_signal)

mode_sig

decrypt2_wrap

in2

(sc_signal)

mode_
delayer

key_
delayer

Figure 47. Example of usage of the cs_mAP2 template distributed with the HetSCv1.3 library.

The example makes actually two instantiations of the cs_mHAP2 template, one for instancing
an adaptive encrypter and another for instancing an adaptive decrypter. Notice that, in order to
transfer the right mode and keys to the adaptive decrypter, the delay modules have been
instanced. This would have been actually unnecessary if the specification would have been
untimed.

More specifically, the example sends each cycle a burst of characters, alternating the number
of characters and the key. That is, the first cycle, prod sends 100 characters to be coded with
key 1, the second cycle, 50 characters to be coded with key 2, the third cycle, 100 characters
to be coded with key 1, and so on (this “synchronization” betweens would not be actually
necessary, that is, the third burst could be, for instance, coded with key 1). The example also
alternates the modes, but keeping 3 cycles the first mode and then 2 cycles the second mode.
However it can be changed, for instance, to have one mode working each consecutive cycle
and the example will still work, producing at the cons module the same characters stream fed

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 108 of 118

at the input. Obviously, the bursts are appearing at the output at periodic times, marked by the
global clock of the specification. A snippet of the log of this example is given:

[nando@Becagim5 mAP2]$ make -f Makefile.sys run

./sys/cs_mAP2_ex.x

Instantiating blocking access list.

 HetSC 1.3alpha - Built Nov 20 2008

Copyright (c) 2005-2007 by GIM-UC - All rights reserved

 University of Cantabria, Spain.

 www.teisa.unican.es/HetSC

 SystemC 2.2.0 --- May 23 2008 22:14:00

 Copyright (c) 1996-2006 by all Contributors

 ALL RIGHTS RESERVED

Mode Adaptation 0 sent.

1st burst&key sent.

in1: "P, r, o, c, l, a, i, m, s, , t, h, i, s, , U, n, i, v, e, r, s, a, l, , D, e, c, l, a, r, a, t, i, o, n, , o, f, , H, u, m, a, n, ,
R, i, g, h, t, s, , a, s, , a, , c, o, m, m, o, n, , s, t, a, n, d, a, r, d, , o, f, , a, c, h, i, e, v, e, m, e, n, t, , f, o, r, , a, l,
l, , p, e, o"

in2: "16_bytes_key_01"

 at 0 s

2nd burst sent.

in1: "p, l, e, s, , a, n, d, , a, l, l, , n, a, t, i, o, n, s, ,, , t, o, , t, h, e, , e, n, d, , t, h, a, t, , e, v, e, r, y, , i, n, d, i, v,
i"

in2: "16_bytes_key_02"

 at 0 s

 out: ""

 at 0 s

1st burst&key sent.

in1: "d, u, a, l, , a, n, d, , e, v, e, r, y, , o, r, g, a, n, , o, f, , s, o, c, i, e, t, y, ,, , k, e, e, p, i, n, g, , t, h, i, s, , D, e,
c, l, a, r, a, t, i, o, n, , c, o, n, s, t, a, n, t, l, y, , i, n, , m, i, n, d, ,, , s, h, a, l, l, , s, t, r, i, v, e, , b, y, , t, e, a, c, h,
i"

in2: "16_bytes_key_01"

 at 10 ms

 out: ""

 at 10 ms

2nd burst sent.

in1: "n, g, , a, n, d, , e, d, u, c, a, t, i, o, n, , t, o, , p, r, o, m, o, t, e, , r, e, s, p, e, c, t, , f, o, r, , t, h, e, s, e, , r, i,
g, h"

in2: "16_bytes_key_02"

 at 20 ms

Mode Adaptation 1 sent.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 109 of 118

 out: "P, r, o, c, l, a, i, m, s, , t, h, i, s, , U, n, i, v, e, r, s, a, l, , D, e, c, l, a, r, a, t, i, o, n, , o, f, , H, u,
m, a, n, , R, i, g, h, t, s, , a, s, , a, , c, o, m, m, o, n, , s, t, a, n, d, a, r, d, , o, f, , a, c, h, i, e, v, e, m, e, n, t, , f,
o, r, , a, l, l, , p, e, o"

 at 20 ms

1st burst&key sent.

in1: "t, s, , a, n, d, , f, r, e, e, d, o, m, s, , a, n, d, , b, y, , p, r, o, g, r, e, s, s, i, v, e, , m, e, a, s, u, r, e, s, ,, , n, a,
t, i, o, n, a, l, , a, n, d, , i, n, t, e, r, n, a, t, i, o, n, a, l, ,, , t, o, , s, e, c, u, r, e, , t, h, e, i, r, , u, n, i, v, e, r, s, a, l, ,
a

"

in2: "16_bytes_key_01"

 at 30 ms

 out: "p, l, e, s, , a, n, d, , a, l, l, , n, a, t, i, o, n, s, ,, , t, o, , t, h, e, , e, n, d, , t, h, a, t, , e, v, e, r, y, , i,
n, d, i, v, i "

 at 30 ms

2nd burst sent.

…

As can be seen, there is latency for the output results quite characteristic from the CS domain.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 110 of 118

12. Adaptive HdS

It has been explained that the development of Adaptive Software in ANDRES has been
focused on software at the application-level (see Figure 25 and section 9.1).

The work on ANDRES has served to estate initial fundamentals and proposals which have to
do with the generation of Adaptive Software at other levels, most specifically with what can
be called Adaptive HdS or AHdS (shown in Figure 48).

HetSC

SystemC

OSSS+R SystemC-AMS

AHW DRHW

Fossy

SWGen

PbHW

SW

RTOS-API

HAL

RTOS
Drivers

Application

HdS

Middleware

Figure 48. Adaptive HdS is an open field.

In a great part, these implications come from the need of considering the involvements of
(partial dynamically) reconfigurable hardware on the software stack. The dynamic change of
hardware has then some implications that have to be handled from the software side,
automatically and implicitly (without the intervention of the programmer at design time or of
the user at run time).

Further extensions of the ANDRES concepts for adaptivity can be then foreseen. Following,
some of them are enumerated:

Adaption of the level of concurrency:

For instance, an application can split it self in more or less processes at a given time,
depending on the available execution resources. This could be interesting on multiprocessor
platforms or even in reconfigurable platforms which could vary the number of processor cores
dynamically. It is foreseen that this could be handled at the RTOS level instead of being
addressed at the application level.

Adaptive HdS:

HdS stands for the software layers which are heavily dependent on the underlying hardware.
In this context, this mostly stands for drivers. That is, RTOS Hardware Abstraction Layers
(HAL) are excluded from this category. Therefore, Adaptive HdS comes from the need of
drivers to dynamically (during run-time) adapt to the changes of Dynamically Reconfigurable
Hardware (DRHW). Then, some automation is needed to make easier and efficient the
development of the HW/SW interface of such drivers.

When complete HW slices (thus pieces of HW functionality) change, then the HdS must
consider its adaptation in several aspects. The foreseen scenarios where automation can be
necessary are the following ones:

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 111 of 118

HW

DRHW

Adaptive
Peripheral

SW

AHdS

HW I/0

(2) (4)

(1)

(3)
HW

Figure 49. AHdS reacts and performs in time the SW actions required by Adaptive Peripherals.

Adaptation to a new memory map ((1) in Figure 49): The software adapts to a change in
what is usually called the programmer’s view of HW. For instance, the set of memory mapped
registers of a reconfigurable peripheral could change in size. The base address of the register
set could also be changed in the reconfiguration (i.e. to remap a bigger data register).
Moreover, even if the set, size and base address of the memory mapped registers remain
fixed, a reconfiguration of the hardware device could just change the semantic of the registers
(for instance, the meaning and size of the different flags of the control register). In any of
these cases, the SW part would need to consider these changes during run-time.

State Initialization/Recovering from software ((2) in Figure 49): The reconfigured
hardware could need either recover its state or to perform a set of initialization steps, which
vary depending on the type of reconfigured hardware functionality and that cannot be
managed in hardware (i.e. due to its size). Therefore, the HdS must adapt or react to provide
the suitable initialization or state recovering steps.

The solutions proposed will require the proposal of a scheme to enable the SW reaction to HW

changes, with involvements on software solving HW/SW interface (mostly drivers in this
context). Such HW changes are transparent to the application software and account for
signalling from specific HW parts ((3) in Figure 49) or from HW I/O events ((4) in Figure
49), which provoke the adaptation of the adaptive (or reconfigurable) peripheral.

The SW reaction can mean the load of a completely new driver or the load of the HdS part of
the driver, if it is found that a single driver can be efficiently separated in a common part and
an HdS part (Figure 48 show this case). It is expected that the first approach will be more

practical in general (meaning driver = HdS, instead of HdS ⊂ driver), based on the
assumption that HdS usually lacks functionality. In any case, the study of practical cases
could clarify this point. Assuming the fomer case, that is, the adaptation as a driver selection,
AHdS initially solves a kind of Plug-and-Play (PnP) for HW/SW interfaces. Moreover,
adaptive software does more than a PnP. Assuming that the PnP has been covered and, for
instance, two drivers (D1 and D2) have been selected and loaded for two reconfigured
functionalities (RF1 and RF2), the context change between RF1 and RF2 affects somehow D1
and D2. Assuming the feasibility of HW bein master too, if some RF stops and “disappears”,
its associated driver should aware of it and tell the software accessing it is happening. That is,
an Automatic-UnPlug (AUP) must be supported.

An additional challenging and distinctive aspect of AHdS is that the consideration of the
adaptation and selection/loading of the appropriate drivers for dynamic reconfigured
hardware (DRHW) has to get the expected functionality, right initialization activities, etc
under the strict time constraints which rule the design of DRHW. Therefore, AHdS reaction
must be a reaction in time and quick enough. In this sense, this kind of AHdS should provide
some kind of Real-Time Automatic Plug and UnPlug (RT-APU) driver scheme. Therefore,
the HW and SW architectures able to provide such RT-APU drivers on Dynamically
Reconfigurable peripheral hardware have to be defined and experimented.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 112 of 118

Currently, two schemes are foreseen as feasible for the Hardware to Software notification:

• Interruption-based. An interruption (IRQ) is associated to the peripheral adaptation.
The IRQ handler triggers the adaptation actions at software side.

• SW task polling a HW register. The software side uses a specific task (ensuring its
computation at a given frequency) which polls a specific register where hardware
adaptations are notified.

AHdS is not going to be covered by ANDRES. ANDRES mostly addresses the development
of the HW/SW interface between the SW partition generated by SWGen and the HW
generated by Fossy. Some advance has been already reported in [D24B]. For it, a fixed
interface is assumed for the programmer view. The ANDRES approach provides a kind of
non-reactive scheme. That is the ANDRES SW/HW interface will solve a case where SW
triggers HW reconfiguration, but the case of SW being adapted because of changes of DRHW
(where hardware is the master, that is the active part provoking the adaptation) remains open.

In the incipient SofSoC project [Soft08], where GIM-UC is involved, a step forward to solve
the software adaptation for reconfigurable hardware devices at design time will be done.
However, the need for dynamic adaptation leaves clear that AHdS is an open field. The
concepts and proposals advanced here in ANDRES, and potentially in SofSoC, should help to
face these issues in future work.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 113 of 118

13. Conclusions

This document reports the extensions of the HetSC and SWGen methodologies performed
within the ANDRES project. These extensions have enabled the possibility for abstract
system-level specification of Adaptive Heterogeneous Embedded Systems (AHES) in
SystemC with a direct link to embedded software (eSW) implementation. It serves to fulfil
one of the main roles of these UC-GIM methodologies within the ANDRES design
framework: to enable the specification and implementation of the software part of the
SystemC AHES specification.

For it, the HetSC methodology has been extended in several ways. In one side, guidelines and
facilities for the connection of HetSC with the other SystemC-based specification
methodologies of ANDRES, OSSS+R and SystemC-AMS, have been provided. Other actions
for the integration of the last HetSC library (v1.3) in the AHES specification and design
framework have been taken.

A main innovative part of this work is the enabling of abstract specification of adaptivity in
HetSC, and more specifically, of adaptive embedded application software. More specifically,
design patterns for specifying the different types of Adaptive Processes (the formalism
provided by the ForSyDe metamodel in [D11A]) in HetSC have been provided. Such design
patterns of HetSC APs (or HAPs) are defined for the different types considered in [D11A],
and moreover for two main domains with impact on software programming: untimed and
synchronous. Additionally, in order to give a more practical focus to the work, guidelines are
given to let the user identify the suitable use cases for each HAP, and examples for clarifying
its application. A set of HAP templates extends the HetSC library and enhances the
productivity in the specification of some particular cases of HAPs.

The system-level approach to APs by means of HAP patterns and templates has the advantage
of enabling the abstract specification of AHES whose implementation is targeted to a HW/SW
heterogeneous platform (while keeping an automatic eSW implementation flow through
SWGen). This is a distinguishing aspect with regard to previous works on adaptive software.
The HetSC AHES specification can be just considered a system-level model, and it is
implementation-independent. However at the same time, this specification is suitable for
refinement, i.e., to hardware, and of course, for automatic software implementation through
the single-source SWGen flow. Not in vain, HAP patterns have been proposed after a
reflection about how adaptive embedded software could be manually written in case of
relying on a C/C++ cross-compiler and a generic embedded RTOS API.

The SWGen methodology has been also extended for the support of synchronous models, with
provides innovative aspects with regard previous SystemC-based approaches. More
specifically, a clocked synchronous POSIX port has been already completed and released with
the last version of SWGen. Other improvements have been oriented to an easier and more
efficient handling of the library and its application to industrial flows and demonstrators.

The type of software generated by SWGen has been located at the application layer (including
calls to the RTOS and to the drivers). It has been seen that adaptivity is a useful
conceptualization, where some specific inputs are considered to be of a special kind since they
change the relationship between the rest of regular inputs and the outputs. The adaptive
process is modelled as a SystemC process and implemented in SW as a thread. In the
specification level, the inputs and outputs are accesses to SystemC/HetSC channels, where at
least one is dedicated to adaptation. In the software implementation, the inputs and the outputs
are inter-thread communication system calls, where at least one is in charge of adaptation.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 114 of 118

Part of the SystemC process or thread context is an adaptation context, that is, a set of
parameter variables, a mode variable, a function pointer, etc, which is updated by the
adaptation input(s).

At the same time, the work has served to explore some of the capabilities and limitations of
the SystemC language to express adaptive systems. The specification of HAP patterns does
not require a significant extension of the HetSC library, except for the ability to transfer
through the channels function pointers and other information bound to the adaptation input.
This information can change the functionality executed by the adaptive SystemC process and
even which channel instances are accessed, which is related with the advanced formalism of
APs adapting the own process or prAPs. The prAP brings the possibility to change the MoC
after an adaptation during simulation time.

A limitation of SystemC has seemed apparent if specification schemes for prHAPs as an exact
reflection of an optimum implementation procedure are aimed. This limitation would come
from the fact that some of the basic SystemC structures have to be statically created (like
ports, modules or channels) in terms of the SystemC simulation phases. The support of such
short of dynamic structures (or of others, like the dynamic addition of a method to a class) is a
requirement for dynamic programming languages, which actually deal with software
implementation. Therefore, this limitation would make the SystemC language less suitable if
it is applied and competing with dynamic languages in a context of pure software
development. However, in an AHES specification&design context, it is not an actual
limitation since SystemC is used for specification. Therefore, the altenative specification
patterns proposed should be sufficient to capture prHAPs and still let optimum software, and
moreover, hardware implementation of them in the remaining codesign activities.

The websites, with the last versions of the libraries (HetSC-v1.3 and SWGen-v1.2) and related
documentation of HetSC and SWGen have been extended and improved, reflecting the
advances done in ANDRES. This documentation is alive and dynamic, having a continuous
update and improvement during the live of the ANDRES project.

This work has also served to reflect on other type of adaptive software which arises and
becomes necessary because of the fact of having changing hardware peripherals implemented
as Dynamically Reconfigurable Hardware. This type of adaptive software has been named
Adaptive Hardware dependent Software (A-HdS) and addresses the need of some kind of
Real Time Automatic Plug&Unplug (RT-APU) mechanism and Real Time Adaptive Driver
(RT-AD) scheme, with associated suitable HW architectures which let software react and
adapt in time and fast enough to changes in hardware.

It has been concluded that ANDRES, even after completion of ongoing work will not
overcome this issue. Moreover, other related projects, like SoftSoC, where GIM-UC is
involved, will provide hints for the solution, without addressing the problem of dynamic
adaptation of software as a response to the changes in DRHW yet. Therefore, this is still an
open, interesting and challenging issue which should be solved in future work and projects.

14. Future Work

It has been pointed out that HetSC and SWGen methodologies, libraries, documentation and
websites are dynamic and are being continuously updated during the project. In deed, this will
become one main activity of the end period of the project, which will provide an additional
support to the industrial partners. Such period can be used to provide additional ports of
synchronous domains, for instance to µC/OS-II API.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 115 of 118

The connection of HetSC with OSSS+R at implementation level can be improved by refining
the advances done in [D24B], in order to get an actual implementation of the connection of
SWGen and Fossy results.

An additional goal of the HetSC/SWGen library is the improvement of the link with SCoPE
[SCo08], by enabling a SWGen output able to directly feed SCoPE, without manual
transformation. This will enhance the analysis capabilities at the system-level, in ANDRES
currently focused on the global analysis of AHES schemes and architectures provided in
[D11C].

Also in a close future within the ANDRES framework, GIM-UC is working on the
publication of the fundamentals on the formalization of SystemC, and specifically of HetSC,
by means of the ForSyDe metamodel. This will undoubtedly complement the formal basis of
the HetSC methodology, provided that the HetSC extensions for specification of adaptivity
proposed in this work already rely on ForSyDe formalisms.

Beyond the ANDRES timeline, as it has been pointed out at the end of the previous section,
A-HdS is a challenging and innovative research area which will be surely required by many
applications using DRHW.

Finally, another work line could be the extension of SystemC to support dynamic creation
(during simulation) of specification facilities for module hierarchical structure (modules, ports
and exports) and dynamic creation of channels. It would enable making a HetSC a language
closer to dynamic programming languages. It would enable the creation and deletion of
channels and ports during run time to support a more compact implementation of process-
based HAPs. However, as it was explained in section 10.5.1, it does not grow the
specification capabilities of SystemC. The interest of such an extension would be limited to
enable a SystemC specification closer to its optimum software implementation (in this sense,
SWGen could deal this case as a mapping) and to optimize simulation resources demanded by
the system-level simulation. On the other hand, it could even slow down the simulation.

Lilkely, a more interesting feature could be the formalization of SystemC specifications with
dynamic creation of processes and looking into the possibilities which the dynamic adaptation
of the concurrency level, that is, the amoung os processes used at a given time for the
solution of a given functionality, could provide.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 116 of 118

15. References

[AS08] Website. http://norvig.com/adapaper-pcai.html

[AW98] N.Amano, T.Watanabe. “LEAD++: An object-Oriented Reflective Language for
Dynamically Adaptable Software Model”, Special Section of Papers Selected from
ITC-CSCC ‘98. 1998.

[BoSi91] F.Boussinot and R. de Simone. “The Esterel Language” In Proceedings of the
IEEE, September 1991.

[BrKl07] J. Brandt and K. Schneider. “How Different are Esterel and SystemC?”. In
Proceedings od FDL’07. Barcelona. Sept., 2007.

[CHS01] W.Chen(a), M.A.Hiltunen, R. D.Schlichting. “Constructing Adaptive
Software in Distributed Systems”, Proc. of the 21st Int. Conf. on Distributed
Computing System, Phoenix, AZ. Apr 2001.

[Dyl09] A. Shalit. “The Dylan Reference Manual. The Definitive Guide to the NewObject-

Oriented Dynamic Language”. Addison-Wesley.1996. Available in html format in
http://www.opendylan.org/books/drm/ .

[D11A] A. Jantsch. “Methodology for Specification of Adaptivity”. Deliverable document
D1.1a, Release 1.5 of the project “Analysis and Design of run-time

Reconfigurable, Heterogeneous System (ANDRES)”. November, 2006.

[D11C] I. Sander and J. Zhu. “Overall Methodology for Partitioning and Performance

Analyisis of AHES”. Deliverable document D1.1c, Release 1.0 of the project
“Analysis and Design of run-time Reconfigurable, Heterogeneous System

(ANDRES)”. July, 2008.

[D12A] F.Herrera, EVillar. “Modelling of SW. Initial Library Elements”. Deliverable
document D1.2a, Release 1.5 of the project “Analysis and Design of run-time
Reconfigurable, Heterogeneous System (ANDRES)”. June, 2006.

[D13A] A. Herrholz, P.A. Hartmann. OFFIS. “Modelling run-time reconfigurable

hardware – Initial library elements”. Deliverable document D1.3a of the project
“Analysis and Design of run-time Reconfigurable, Heterogeneous System

(ANDRES)”. January, 2007.

[D15A] M. Damm. “Modelling extensions for polymorphic signals, initial library elements”.

Tech. Report ANDRES/OFFIS/P/D1.5a/1.0, ANDRES project deliverable, May 2007.

[D16A] J. Haase, P. A. Hartmann, F. Herrera. "Initial Version of Integrated Framework".
Deliverable ANDRES/TUV/R/D1.6a/1.0 of ANDRES project. 2008-06.

[D24B] A. Herrholz, A. Schallenberg, C. Brunzema, K. Grüttner. “Synthesiser P2
(Optimisation techniques implemented)”. Deliverable document D1.3a of the
project “Analysis and Design of run-time Reconfigurable, Heterogeneous System
(ANDRES)”. January, 2007. 11-2008.

[FosW] http://fossy.offis.de/.

[FHSV03] V.Fernández, F.Herrera, P.Sánchez and E.Villar. “Embedded Software Generation
From SystemC For Platform Based Design” in “SystemC: Methodologies and

Applications”. Ed. W.Mueller, W. Rosenstiel, J.Ruf. Kluwer Academic Publishers.
March 2003. ISBN 1-4020-7479-4.

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 117 of 118

[HDG07] J. Haase, M. Damm, C. Grimm, F. Herrera, E. Villar "Using Converter Channels
within a Top-Down Design Flow in SystemC" The 15th Austrian Workhop on
Microelectronics. Graz, Austria. 2007-10

[HDG08] J. Haase, M. Damm, C. Grimm, F. Herrera, E. Villar. "Bridging MoCs in SystemC

Specifications of Heterogeneous Systems". EURASIP Journal on Embedded
Systems. Special Issue "C-Based Design of Heterogeneous Embedded Systems".
Volume 2008, Article ID 738136, 16 pgs. doi:10.1155/2008/738136. 2008-05.

[HSCW] www.teisa.unican.es/HetSC

[HUM08] F.Herrera, E. Villar. “HetSC Users Manual”. Universidad de Cantabria. Santander.
2008. Disponible en www.teisa.unican.es/HetSC/documentation.html.

[Herr09] F.Herrera. “Especificación Heterogénea y Generación Automática de Software
desde SystemC para Sistemas Embebidos”. PhD thesis. Submitted to the
University of Cantabria. Nov. 2008. Draft available in
www.teisa.unican.es/~fherrera.

[HeVi07] F. Herrera, E. Villar "Extension of the SystemC kernel for Simulation Coverage
Improvement of System-Level Concurrent Specifications". Proceedings of the
Forum on Design Languages (FDL’06), Darmstadt, ECSI. 2006-09.

[HVG07] F.Herrera, E.Villar, C.Grimm, M.Damm and J.Haase. “A general approach to the
interoperability of HetSC and SystemC-AMS”. In Proc. of the Forum of Design
Languages, FDL’07. Barcelona. September. 2007.

[HVH08] F. Herrera, E. Villar, P. A. Hartmann. “Specification of HW/SW adaptive Embedded

Systems in SystemC”. In Proc. of the Forum on specification and Design Languages
2008, FDL08. Stuttgart. Germany.

[IEEE06] IEEE Computer Society. “IEEE Standard SystemC Language Reference Manual”.
IEEE Standard 1666-2005. March, 2006.

[Jan05] A. Jantsch. Models of embedded computation. In R.Zurawski, Ed., Embedded
Systems Handbook. CRC Press, 2005. Invited Contribution.

[Lab02] Lean J. Labrosse. MicroC/OS-2”. The real-Time Kernel. CMP Books. 2nd edition.
2002.

[Lee97] E.A.Lee. A denotational semantics for dataflow with firing. Technical Report
UCB/ERL M97/3, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, January 1997.

[Mas03] A.Massa. “Embedded Software Development with eCos”. Prentice Hall PTR. Nov
25, 2003. ISBN: 0-1303-5473-2.

[Net08] P.Netinant. “An extensible and adaptable model for system software”,
Proceedings of the 7th WSEAS International Conference on Software
Engineering, Parallel and Distributed Systems, 2008. Computer Science
Department, Bangkok University, Bangkok, Thailand.

[OSCI05] OSCI. “SystemC Synthesizeable Subset”. 2005. En www.systemc.org.

[PERFW] www.teisa.unican.es/perfidix

[PHF04] H.Posadas, F.Herrera, V.Fernández, P.Sánchez & E.Villar. “Single Source Design
Environment for Embedded Systems based on SystemC”. Journal on Design

ANDRES/UC/P/D1.2b/1.2 Public

Modelling of Software – Final Library Elements

Page 118 of 118

Automation for Embedded Systems. Vol. 9. Number 4. pp.293-312. Springer.
December, 2004.

[SaJa04] I. Sander and A. Jantsch. System modeling and transformational design refinement
in ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 23(1);17-32, January 2004.

[SCO02] B.Staudt Lerner, J.M.Cobleigh, L.J.Osterweil, A.Wise. “Using Containment Units
for Self Adaption of Software”, Proc. of the 10th ACM SIGSOFT Symposium on
Foundations of Software Engineering, 2002.

[LJIL09] Website. http://laser.cs.umass.edu/tools/littlejil.shtml

[SAB02] B.Sirpatil, J.Armstrong, J.Baker. “Using SystemC to Implement Embedded
Software”. International HDL Conference and Exhibition (HDLCon 2002), March,
2002.

[Sch07] R. Schroll. Design komplexer heterogener Systeme mit Polymorphen Signalen.
Dissertation, Institut für Informatik, Universität Frankfurt am Main, 2007.

[SCo08] http://www.teisa.unican.es/gim/en/scope.php.

[Sir02] B.Sirpatil. “Software Synthesis of SystemC Models”. Master Thesis. Virginia
Polytechnic Institute and State University. Blacksburg, Virginia. July, 2002.

[Son88] Keene, S.. “Object-oriented Programming in Common Lisp: A Programmer's
Guide to CLOS”. 1988, Addison-Wesley. ISBN 0-201-17589-4.

[Soft08] http://www.medeaplus.org/web/projects/appli_phase2.php?request_temp=softsoc.

[SWG08] www.teisa.unican.es/SWGen.

[UCP08] http://www.it.hs-esslingen.de/~zimmerma/software/index_uk.html

