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Abstract 

 
AADS supports the performance analysis of AADL 
specifications throughout the refinement process from the 
initial system architecture till the complete application and 
execution platform are developed. 
 

 
1. Introduction 
 
Nowadays, embedded systems must support the deployment 
of heterogeneous applications within heterogeneous 
architectures. In most cases, the execution platform is not 
fixed and must be designed and optimized in conjunction 
with the application software. Therefore, early estimation of 
the system performance on the executive platform, under 
real-time constraints, is desirable. Such analysis requires a 
unified model of the application and the architecture, and an 
effective means to define the mapping of application 
functions onto architecture resources and services. AADL 
[1] provides such a modelling framework.  
There is a commonly recognized need for new development 
frameworks that allow designers to perform efficient 
exploration of design alternatives and analyze system 
properties throughout the design cycle. Some system 
properties can be obtained by static analysis. Many other 
properties can only be obtained through simulation. In any 
case, system simulation is needed for performance analysis 
under real execution conditions. System simulation enables 
the correct dimensioning of the system, detection of locks, 
missed deadlines and other potential problems raised by the 
complex interaction among components that can be found 
in a real system. The earlier all those problems are detected, 
the less the associated cost of correcting them [2]. 
SystemC has become the standard language for modelling 
and simulation of HW/SW embedded systems [3]. 
In this paper, AADS, an AADL simulation and 
performance analysis framework, is presented. The tool can 
support prototype-based design allowing the functional and 
non-functional verification of the system while it is being 
refined until the final implementation. Based on SystemC, 
the framework supports the seamless integration of any HW 
component and an easy optimization of the executive 
platform. 
 

2. AADS 
 
AADS [4] is written in Java and it has been developed as a 
plug-in [5] of Eclipse [6]. 

AADS enables the modelling of a subset of AADL for 
purposes of implementation and simulation. The starting 
point of the simulator is a functional AADL specification 
without detailed code. For each component, the 
corresponding timing constraints are defined. This initial 
AADL specification supports the verification of the global 
performance constraints of the system based on the specific 
timing constraints of the different components. The AADL 
model is parsed using AADS and a model suitable to be 
simulated with SCoPE [7] is produced, in order to check if 
the AADL constraints are fulfilled. 
As the design process advances and, on the one hand, the 
actual functionality is attached to the software components 
using the corresponding source code and, on the other, the 
functionality is mapped onto specific platform resources, a 
more accurate performance estimation is performed. These 
refined properties will be added to the AADL model and a 
new model is generated by AADS. By comparing (e.g. 
using assertions) the initial timing constraints with these 
refined timing estimations, it is possible to verify the non 
functional correctness of the design process in any 
refinement step. The corresponding methodology is shown 
in Fig. 1. 

 
Figure 1: Refinement of AADL 

 

3. Translation from AADL 
 
AADL enables the specification of both the architecture and 
functionality of an embedded real-time system. AADS 
translates both to SystemC (see Fig. 2). It parses the AADL 
model so the functionality is translated to an equivalent 
POSIX [8] model and the architecture is represented in 
XML. 
The functional elements are translated as follows: 
Threads. An AADL thread translates seamlessly into a 
POSIX thread. 
Periodic threads. Dispatch_Protocol and Period are set. 
The source code of the thread is put into an infinite loop. It 
waits to repeat the loop for exactly the time specified. 
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Port connections translate into message queues, signals and 
global variables: 
Message queues. An AADL event data port connection 
between threads translates into a POSIX message queue 
between threads. Properties Queue_Size and 
Queue_Processing_Protocol are used. 
Signals. An AADL event port connection between threads 
translates into a sending of POSIX signals between threads. 
The signals used are the user-definable real-time signals. 
Global variables. An AADL data port connection between 
threads translates into a global variable between threads. 
This translation is suitable for immediate data port 
connections. 
The AADL properties are translated as follows: 
Scheduling_Policy and Priority of threads. An AADL 
property set called UC with two properties 
POSIX_Scheduling_Policy and Priority has been defined. 
Compute_Execution_Time (min, max). The minimum 
causes the call to a function that consumes that time. The 
maximum uses a timer whose expiry triggers one of the last 
real-time signals to be sent and a function to be called that 
lowers the priority of the thread, and waits for a while 
before restoring the initial priority. 
Names. Properties Activate_Entrypoint and Source_Text 
are used. 
Initialize / Finalize_Entrypoint. These properties 
determine the routine called at the start/end of the start 
routine of the corresponding thread. 
Initialize / Finalize_Execution_Time (min, max). The 
minimum causes the call to a function that consumes that 
time. It checks the maximum time, to see if this amount of 
time has elapsed and returns if it has been. 
The issues related to the subprograms are the following: 
Subprogram. An AADL subprogram translates into a 
routine. 
Subprogram calls. Local calls and remote client-server 
calls translate into calls from one routine to another. 
Actual_Subprogram_Call is used. 
Subprogram parameters. AADL parameters translate into 
parameters of the subprogram by value or reference. 
AADL data are managed as follows: 
Data type. Simple independent AADL data give rise to a 
data type. Source_Data_Size is used. 
Simple Data. A simple AADL data subcomponent of a 
thread or a process gives rise to a simple global variable. 
Composite Data. This data generate a C++ class of data 
with its methods and/or member data. The composite data 
subcomponents of a thread or a process give rise to a global 
variable 
The hardware architecture is structured through the XML 
file generated by AADS. It is used as part of the 
configuration parameters of SCoPE and is divided into: 
HW_Platform. Any AADL implementation of a processor, 
memory, bus or device must be specified in the 
HW_Components subsection. Properties Assign_Byte_Time, 
Read_Time, Write_Time, Word_Coun, Word_Size and 
Memory_Protocol are used. The HW_Architecture and 
Computing_groups subsections use Base_Address and 
requires bus access. 
SW_Platform. This section has two subsections: 
SW_Components and SW_Architecture. 

Application. This section has two subsections: 
Functionality and Allocation. Activate_Entrypoint, 
Source_Text and Actual_Processor_Binding are used. 

 
Figure 2: Translation with AADS. 

 

4. Conclusion 
 
In this project, we have developed AADS, an AADL 
SystemC simulation tool. AADS supports the refinement of 
AADL models through performance analysis done with 
SCoPE, after translating those models. 
The generation of the SystemC model from the AADL 
specification is not straightforward. Nevertheless, the 
SystemC model generated by AADS is able to capture the 
fundamental dynamic properties of the initial system 
specification. In this way, AADS supports design space 
exploration by refinement of the AADL functionality and 
its implementation on an optimized platform. 
Future work includes incorporation of AADS features that 
appear in the annex behaviour specification and in V2.0 of 
the AADL standard. 
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