
AADS: AADL Simulation and Performance Analysis in SystemC

Roberto Varona-Gómez, Eugenio Villar

{roberto, villar}@teisa.unican.es

GIM - TEISA - University of Cantabria – Spain

http://www.teisa.unican.es/

Abstract

AADS supports the performance analysis of AADL
specifications throughout the refinement process from the
initial system architecture till the complete application and
execution platform are developed.

1. Introduction

Nowadays, embedded systems must support the deployment
of heterogeneous applications within heterogeneous
architectures. In most cases, the execution platform is not
fixed and must be designed and optimized in conjunction
with the application software. Therefore, early estimation of
the system performance on the executive platform, under
real-time constraints, is desirable. Such analysis requires a
unified model of the application and the architecture, and an
effective means to define the mapping of application
functions onto architecture resources and services. AADL
[1] provides such a modelling framework.
There is a commonly recognized need for new development
frameworks that allow designers to perform efficient
exploration of design alternatives and analyze system
properties throughout the design cycle. Some system
properties can be obtained by static analysis. Many other
properties can only be obtained through simulation. In any
case, system simulation is needed for performance analysis
under real execution conditions. System simulation enables
the correct dimensioning of the system, detection of locks,
missed deadlines and other potential problems raised by the
complex interaction among components that can be found
in a real system. The earlier all those problems are detected,
the less the associated cost of correcting them [2].
SystemC has become the standard language for modelling
and simulation of HW/SW embedded systems [3].
In this paper, AADS, an AADL simulation and
performance analysis framework, is presented. The tool can
support prototype-based design allowing the functional and
non-functional verification of the system while it is being
refined until the final implementation. Based on SystemC,
the framework supports the seamless integration of any HW
component and an easy optimization of the executive
platform.

2. AADS

AADS [4] is written in Java and it has been developed as a
plug-in [5] of Eclipse [6].

AADS enables the modelling of a subset of AADL for
purposes of implementation and simulation. The starting
point of the simulator is a functional AADL specification
without detailed code. For each component, the
corresponding timing constraints are defined. This initial
AADL specification supports the verification of the global
performance constraints of the system based on the specific
timing constraints of the different components. The AADL
model is parsed using AADS and a model suitable to be
simulated with SCoPE [7] is produced, in order to check if
the AADL constraints are fulfilled.
As the design process advances and, on the one hand, the
actual functionality is attached to the software components
using the corresponding source code and, on the other, the
functionality is mapped onto specific platform resources, a
more accurate performance estimation is performed. These
refined properties will be added to the AADL model and a
new model is generated by AADS. By comparing (e.g.
using assertions) the initial timing constraints with these
refined timing estimations, it is possible to verify the non
functional correctness of the design process in any
refinement step. The corresponding methodology is shown
in Fig. 1.

Figure 1: Refinement of AADL

3. Translation from AADL

AADL enables the specification of both the architecture and
functionality of an embedded real-time system. AADS
translates both to SystemC (see Fig. 2). It parses the AADL
model so the functionality is translated to an equivalent
POSIX [8] model and the architecture is represented in
XML.
The functional elements are translated as follows:
Threads. An AADL thread translates seamlessly into a
POSIX thread.
Periodic threads. Dispatch_Protocol and Period are set.
The source code of the thread is put into an infinite loop. It
waits to repeat the loop for exactly the time specified.

mailto:%7Broberto,%20villar%7D@teisa.unican.es
http://www.teisa.unican.es/

Port connections translate into message queues, signals and
global variables:
Message queues. An AADL event data port connection
between threads translates into a POSIX message queue
between threads. Properties Queue_Size and
Queue_Processing_Protocol are used.
Signals. An AADL event port connection between threads
translates into a sending of POSIX signals between threads.
The signals used are the user-definable real-time signals.
Global variables. An AADL data port connection between
threads translates into a global variable between threads.
This translation is suitable for immediate data port
connections.
The AADL properties are translated as follows:
Scheduling_Policy and Priority of threads. An AADL
property set called UC with two properties
POSIX_Scheduling_Policy and Priority has been defined.
Compute_Execution_Time (min, max). The minimum
causes the call to a function that consumes that time. The
maximum uses a timer whose expiry triggers one of the last
real-time signals to be sent and a function to be called that
lowers the priority of the thread, and waits for a while
before restoring the initial priority.
Names. Properties Activate_Entrypoint and Source_Text
are used.
Initialize / Finalize_Entrypoint. These properties
determine the routine called at the start/end of the start
routine of the corresponding thread.
Initialize / Finalize_Execution_Time (min, max). The
minimum causes the call to a function that consumes that
time. It checks the maximum time, to see if this amount of
time has elapsed and returns if it has been.
The issues related to the subprograms are the following:
Subprogram. An AADL subprogram translates into a
routine.
Subprogram calls. Local calls and remote client-server
calls translate into calls from one routine to another.
Actual_Subprogram_Call is used.
Subprogram parameters. AADL parameters translate into
parameters of the subprogram by value or reference.
AADL data are managed as follows:
Data type. Simple independent AADL data give rise to a
data type. Source_Data_Size is used.
Simple Data. A simple AADL data subcomponent of a
thread or a process gives rise to a simple global variable.
Composite Data. This data generate a C++ class of data
with its methods and/or member data. The composite data
subcomponents of a thread or a process give rise to a global
variable
The hardware architecture is structured through the XML
file generated by AADS. It is used as part of the
configuration parameters of SCoPE and is divided into:
HW_Platform. Any AADL implementation of a processor,
memory, bus or device must be specified in the
HW_Components subsection. Properties Assign_Byte_Time,
Read_Time, Write_Time, Word_Coun, Word_Size and
Memory_Protocol are used. The HW_Architecture and
Computing_groups subsections use Base_Address and
requires bus access.
SW_Platform. This section has two subsections:
SW_Components and SW_Architecture.

Application. This section has two subsections:
Functionality and Allocation. Activate_Entrypoint,
Source_Text and Actual_Processor_Binding are used.

Figure 2: Translation with AADS.

4. Conclusion

In this project, we have developed AADS, an AADL
SystemC simulation tool. AADS supports the refinement of
AADL models through performance analysis done with
SCoPE, after translating those models.
The generation of the SystemC model from the AADL
specification is not straightforward. Nevertheless, the
SystemC model generated by AADS is able to capture the
fundamental dynamic properties of the initial system
specification. In this way, AADS supports design space
exploration by refinement of the AADL functionality and
its implementation on an optimized platform.
Future work includes incorporation of AADS features that
appear in the annex behaviour specification and in V2.0 of
the AADL standard.

5. References

[1] SAE: AADL. June 2006, document AS5506/1.
www.sae.org/technical/standards/AS5506/1.
[2] A.D. Pimentel et al.: “A systematic approach to
exploring embedded system architectures at multiple
abstraction levels”, IEEE Transactions on Computers, 2006.
[3] H. Posadas et al.: RTOS modeling in SystemC for real-
time embedded SW simulation: A POSIX model. Design
Automation for Embedded Systems. Springer. 2005.
[4] AADS V1.2 UC 2008. www.teisa.unican.es/AADS
[5] P. H. Feiler, A. Greenhouse: OSATE Plug-in
Development Guide. CMU. Pittsburgh. (2006).
[6] The Eclipse Foundation 2009. www.eclipse.org
[7] SCoPE V1.1.0 UC 2009. www.teisa.unican.es/scope
[8] M. González: POSIX tiempo real. UC, Santander 2004.

Acknowledgement

The authors would like to thank their colleagues in the GIM
in the University of Cantabria and their colleagues in the
SPICES project for their assistance.

http://www.sae.org/technical/standards/AS5506/1
http://www.eclipse.org/
http://www.teisa.unican.es/scope

