
SCope: SoC Co-simulation and Performance Estimation in SystemC

Héctor Posadas1, David Quijano1, Eugenio Villar 1 & Marcos Martínez2

{posadash, quijano, villar}@teisa.unican.es, marcos.martinez@ds2.es
1 University of Cantabria, GIM, TEISA Dept

http://www.teisa.unican.es/gim
2DS2, Robert Darwin 2, Parque Tecnológico, Paterna, Spain

http://www.ds2.es

Abstract

SCope is a SystemC extension for system co-simulation and
analysis. SCope includes capabilities for OS modeling,
performance estimation (Time & Power) and time
annotation. It also allows modeling the HW platform.

1. Introduction

Co-simulation has become one of the most important issues
in HW/SW co-design of very complex systems, especially
for Multiprocessor System on Chip (MpSoC). One of the
most important ways of simulating complex HW/SW
systems is the use of high-level languages. Among them,
SystemC is one of the most accepted languages in the
designer community.
However, the use of SystemC presents some limitations.
The simulation of SW elements requires including the
effects of a Real-Time Operating System (RTOS), and the
HW platform both together. Thus, an extension of SystemC
is necessary. SCope provides capabilities for modeling both
the SW operation and the HW interconnections in a
SystemC environment.

2. SW modeling and Performance
Estimations

Two are the main limitations of SystemC for SW modeling.
First, the execution of the refined SW code produces an
untimed simulation. As a consequence, the system cannot
be accurately co-simulated and performance estimations
cannot be obtained. The timing effects of the target
platform in the SW execution time are critical when
modeling the whole system.
Secondly, SystemC does not directly support several
features presented in typical RTOS. The SW refinement
requires a model of the RTOS mechanisms for concurrency,
scheduling, communication and synchronization. Thus, the
simulation framework has to include a RTOS specification
that provides all the common capabilities in the standard
operating systems.
To overcome these two limitations, the previous tool
PERFidiX has been integrated in SCope. This tool manages
the SW execution. First, PERFidiX automatically

instruments the SW code to obtain execution time
estimations. The library dynamically estimates the time cost
of the SW segment that is been executed. After that, the
estimated time is annotated at the correct points where
required, not only at static predefined points. Thus, the
untimed simulation is moved into a timed one.
Furthermore, PERFidiX models a multiprocessor OS based
on the POSIX API. Processes and threads can be scheduled
using the POSIX defined priorities and policies. Channels,
as mutexes, semaphores or message queues, and POSIX
signals can be also used to communicate and synchronize
the system SW components. For network communications,
lwIP, a TCP/IP stack, has been integrated to implement the
socket functions of POSIX.
The library also contains a set of Linux-based low-level I/O
functions for drivers modeling. Interruption management is
also considered in the OS model. HW interruptions are
received from the system bus and execute the
corresponding interrupt handlers. Some drivers, as a
network driver model has been included in the OS model.
Finally, some middleware can be modeled with SCope. A
CORBA model has been placed on top of SCope to run
CORBA components, in collaboration with TIMA. This
model uses the OS capabilities, and the bus and network
models to simulate the execution of CORBA applications.

º

Middleware
model

OS model
(POSIX)

OS API (POSIX)

Middlew. API

OS model:
Sched, comm,
synchr, timing

Additonal
packages:

Stack TCP/IP

User defined
components

User defined
components

BUS model

Peripherals

Middleware
model

OS model
(POSIX)

OS API (POSIX)

Middlew. API

OS model:
Sched, comm,
synchr, timing

Additonal
packages:

Stack TCP/IP

PERFidix: Low-level IO, Interrups

User-
defined
drivers

User defined
components

User defined
components

BUS model Network

PERFidix: Low-level IO, Interrups

OS
drivers:
Network

User-
defined
drivers

OS
drivers:
Network D

is
tri

bu
te

d
O

S
m

od
el

SystemC

Comm. proposed
Comm. alternative

SystemC TLM2.0 SystemC TLM2.0

 Figure 1: Scope system modelling

3. HW Platform Modeling

To analyse adequately MpSoC, the HW platform has to be
considered. Thus, co-simulation mechanisms are required.
These mechanisms involve modeling the communication
infrastructure, and the HW module interfaces. Two
communication models are provided to the user with their
corresponding interfaces: bus and network.
To model buses, the TLM2 standard has been adopted. The
library provides a fast, generic bus model with priority
management and bandwidth control. The model allows
including delays, connecting multiple masters, and bus
chaining. Generic interfaces to connect the bus with the OS
and specific peripherals are also provided. The library also
includes some examples of peripherals as a network
interface to connect the bus and the NoC.
To model networks, the Sicosys tool has been also
integrated. This tool is optimised to model MpSoC
networks, allowing definitions of multiple network
configurations, routing protocols or router models. The tool
is able of delivering the packages at the adequate nodes and
estimating the delay and network utilization depending on
the network characteristics.
Regarding to the system architecture proposed, Scope
proposes a platform where each node contains each bus,
with processors, memory and peripherals. The operating
system is able of moving tasks among the processors of the
same node dynamically, and even among different nodes,
with some limitations.

4. SCope GUI Tool

To simplify the use of SCope and optimise results a graphic
interface is provided. This interface allows the designer to
easily configure the library to model adequately the target
platform and to analyse the simulation results.
With that tool, the processors utilizations, process
executions, channels uses and some platform information
can be graphically analysed.

Figure 2: SCope interface Tool

This tool will be available soon from:
http://www.teisa.unican.es/scope
(Meanwhile, more information can be found at
http://www.teisa.unican.es/perfidix)

5. Conclusions

Scope is a SystemC library that extends the SystemC kernel
without modifying it. The library allows the designer to
simulate refined SW components containing POSIX
functions or middleware interfaces, over a complete
MpSoC model.
The library provides a complete OS functionality, and
produces timed simulations of the SW components, using
dynamic estimation and annotation.
To model the platform, bus and network timed models are
provided, allowing some configuration options and the
possibility of easily integrate HW components.
Finally, the tool provides a graphic interface where the
simulation results can be analysed to optimise the system
refinement.

6. References

[1] H. Posadas, F. Herrera, P. Sánchez, E. Villar and F.
Blasco: “System-level performance analysis in SystemC”,
in Proceedings of the Design, Automation and Test
Conference, IEEE, 2004.
[2] H. Posadas, E. Villar and F. Blasco: “Real-Time
Operating System modeling in SystemC for HW/SW co-
simulation”, in Proceedings of DCIS, IST, Lisbon, 2005.
[3] H. Posadas, J. Adámez, P. Sánchez, E. Villar and F.
Blasco: “POSIX modeling in SystemC”, Proceedings of the
Asia and South-Pacific Design Automation Conference,
IEEE, 2006.
[4] H. Posadas, J. Adámez, E. Villar, Francisco Escuder,
Francisco Blasco: "RTOS modeling in SystemC for Real-
Time embedded SW simulation: A POSIX model", Design
Automation for Embedded Systems, V.10, N.4, Springer,
pp.209-227. 2006-12
[5] H. Posadas, D. Quijano, E. Villar, Francisco Escuder,
Marcos Martínez: "TLM interrupt modelling for HW/SW
co-simulation in SystemC" XXI Conference on Design of
Circuits and Integrated Systems, DCIS'06 . 2006-11

Acknowledgement

This project has been funded by the MEDEA+ LoMoSA+
project and the Spanish MEC through the TEC2005-03301
project

