
High Speed Multi-Processors System-On-Chip Simulation
Platforms for Hardware Dependent Software Development

Frédéric Pétrot Eugenio Villar

System-Level Synthesis Group, TIMA Laboratory TEISA Department, University of Cantabria
46, Av Félix Viallet, 38031 Grenoble, France Av. Los Castros, Santander, Spain

October 14th 2009

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 1 / 1



Introduction

Hardware Dependent Software and System-On-Chip Simulation Platform

The Trends:

MPSoC architecture becomes complex

Multiple processors for parallel applications

Multiple accelerators and I/O devices

HDS development becomes complex also

One platform can support several OS

Device driver porting is tedious

The Challenges:

HDS validation and debug

Focus of these works:

High speed HW/SW co-simulation

With low level details of HDS

At HAL level (TIMA)

At RTOS level (U. Cantabria)

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 2 / 1



Introduction

Hardware Dependent Software and System-On-Chip Simulation Platform

The Trends:

MPSoC architecture becomes complex

Multiple processors for parallel applications

Multiple accelerators and I/O devices

HDS development becomes complex also

One platform can support several OS

Device driver porting is tedious

The Challenges:

HDS validation and debug

Focus of these works:

High speed HW/SW co-simulation

With low level details of HDS

At HAL level (TIMA)

At RTOS level (U. Cantabria)

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 2 / 1



Introduction

Hardware Dependent Software and System-On-Chip Simulation Platform

The Trends:

MPSoC architecture becomes complex

Multiple processors for parallel applications

Multiple accelerators and I/O devices

HDS development becomes complex also

One platform can support several OS

Device driver porting is tedious

The Challenges:

HDS validation and debug

Focus of these works:

High speed HW/SW co-simulation

With low level details of HDS

At HAL level (TIMA)

At RTOS level (U. Cantabria)

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 2 / 1



Introduction

Hardware Dependent Software and System-On-Chip Simulation Platform

Classical approaches

Cycle accurate co-simulation environment

Cross compiled embedded software

Interpreted and executed by ISSs

Accurate but slow
⇒ ISSs is 3 orders of magnitude slower
than the native simulation method
⇒ QEMU is faster, 1 order of magnitude

TLM based co-simulation environment

Abstraction of the hardware in TLM

Software still interpreted by ISSs

Native HW/SW co-simulation approaches

Software is executed by the host machine

Considerable speedup

No application modifications

Functional validation of the whole system

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 3 / 1



Introduction

Hardware Dependent Software and System-On-Chip Simulation Platform

Classical approaches

Cycle accurate co-simulation environment

Cross compiled embedded software

Interpreted and executed by ISSs

Accurate but slow
⇒ ISSs is 3 orders of magnitude slower
than the native simulation method
⇒ QEMU is faster, 1 order of magnitude

TLM based co-simulation environment

Abstraction of the hardware in TLM

Software still interpreted by ISSs

Native HW/SW co-simulation approaches

Software is executed by the host machine

Considerable speedup

No application modifications

Functional validation of the whole system

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 3 / 1



Efficient Implementation of Native Software Simulation for MPSoC

Objectives & Contributions

Objectives: MPSoC simulation platform

Taking into account hardware parallelism

High simulation speed to allow
User application validation and debug
HDS validation and debug
Hardware architecture validation and debug

No software source code modification
To debug the user application software
To debug the operating system (TIMA)
To debug the device drivers
To explore the design spaces (U. Cantabria)

Contributions: A methodology to implement fast and precise MPSoC platforms

With accurate memory modelization and hardware software interactions

Based on native approaches to achieve simulation speed

Allowing a complete software portability to the target platform

Running on SystemC

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 4 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

RTOS Level Native Simulation Approach

Definition: Native simulation

SW application is compiled for the workstation
processor instead of the chip one.
The binary is directly executed on the
workstation processor.

Simulated source-code

Application

Device drivers

Modeling elements

Abstract model of the RTOS

Host OS Libraries (C, Math, ...)

Communication libraries (stack IP, ...)

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 5 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

RTOS Level Native Simulation Approach

Definition: Native simulation

SW application is compiled for the workstation
processor instead of the chip one.
The binary is directly executed on the
workstation processor.

Simulated source-code

Application

Device drivers

Modeling elements

Abstract model of the RTOS

Host OS Libraries (C, Math, ...)

Communication libraries (stack IP, ...)

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 5 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

RTOS Level Native Simulation Approach

Definition: Native simulation

SW application is compiled for the workstation
processor instead of the chip one.
The binary is directly executed on the
workstation processor.

Simulated source-code

Application

Device drivers

Modeling elements

Abstract model of the RTOS

Host OS Libraries (C, Math, ...)

Communication libraries (stack IP, ...)

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 5 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

Basic Concepts: Transaction Accurate Model (RTOS API Level)

Transaction Accurate Model

SystemC executable model of HW components
processor modules handle the HAL APIs

Application software interface: RTOS API

POSIX, µCOS, WinCE

Driver interface

Linux 2.6

Hardware interface: TLM2.0

Payload Bus model

AMBA, ...

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 6 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

Basic Concepts: Transaction Accurate Model (RTOS API Level)

Transaction Accurate Model

SystemC executable model of HW components
processor modules handle the HAL APIs

Application software interface: RTOS API

POSIX, µCOS, WinCE

Driver interface

Linux 2.6

Hardware interface: TLM2.0

Payload Bus model

AMBA, ...

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 6 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

Basic Concepts: Transaction Accurate Model (RTOS API Level)

Transaction Accurate Model

SystemC executable model of HW components
processor modules handle the HAL APIs

Application software interface: RTOS API

POSIX, µCOS, WinCE

Driver interface

Linux 2.6

Hardware interface: TLM2.0

Payload Bus model

AMBA, ...

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 6 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

Basic Concepts: Transaction Accurate Model (RTOS API Level)

Transaction Accurate Model

SystemC executable model of HW components
processor modules handle the HAL APIs

Application software interface: RTOS API

POSIX, µCOS, WinCE

Driver interface

Linux 2.6

Hardware interface: TLM2.0

Payload Bus model

AMBA, ...

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 6 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

HAL Level Native Simulation Approach

Definition: Native simulation

SW application is compiled for the workstation
processor instead of the chip one.
The binary is directly executed on the
workstation processor.

All software layers above the HAL API

Application

Operating System

Device drivers

Libraries (C, Math, Com, ...)

Software encapsulation

In a classical dynamic library

All HAL APIs are exposed to OS and
drivers

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 7 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

HAL Level Native Simulation Approach

Definition: Native simulation

SW application is compiled for the workstation
processor instead of the chip one.
The binary is directly executed on the
workstation processor.

All software layers above the HAL API

Application

Operating System

Device drivers

Libraries (C, Math, Com, ...)

Software encapsulation

In a classical dynamic library

All HAL APIs are exposed to OS and
drivers

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 7 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

HAL Level Native Simulation Approach

Definition: Native simulation

SW application is compiled for the workstation
processor instead of the chip one.
The binary is directly executed on the
workstation processor.

All software layers above the HAL API

Application

Operating System

Device drivers

Libraries (C, Math, Com, ...)

Software encapsulation

In a classical dynamic library

All HAL APIs are exposed to OS and
drivers

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 7 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

Basic Concepts: Transaction Accurate Model (HAL API Level)

Transaction Accurate Model

SystemC executable model of HW components
processor modules handle the HAL APIs

Software interface: HAL API

Context switching

Interrupt management

Endianness conversion

I/O accesses

Hardware interface: HW protocol

VCI, AMBA, ...

Specific HW interface (e.g. FIFO)

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 8 / 1



Efficient Implementation of Native Software Simulation for MPSoC Basic Concepts

Basic Concepts: Transaction Accurate Model (HAL API Level)

Transaction Accurate Model

SystemC executable model of HW components
processor modules handle the HAL APIs

Software interface: HAL API

Context switching

Interrupt management

Endianness conversion

I/O accesses

Hardware interface: HW protocol

VCI, AMBA, ...

Specific HW interface (e.g. FIFO)

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 8 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Efficient Native Simulation for MPSoC

Key Ideas:

Keep the low level hardware details for software native simulation

No application software and device driver code modification

Key Challenges:

Memory representation
Considered private for each processor in classical native simulation
Shared memories have to be modeled to support parallel architectures

Software application timing annotation

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 9 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Problematic

Two memory mappings to be considered

The chip memory mapping (1)

Defined by the HW designers

Used by the address decoder at
simulation time

The SystemC memory mapping (2)

Shared by the SW stack

Host machine dependent

Contains standard sections
Program in .text
Initialized data in .data
Uninitialized data in .bss

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 10 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Problematic

Two memory mappings to be considered

The chip memory mapping (1)

Defined by the HW designers

Used by the address decoder at
simulation time

The SystemC memory mapping (2)

Shared by the SW stack

Host machine dependent

Contains standard sections
Program in .text
Initialized data in .data
Uninitialized data in .bss

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 10 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Problematic

Two memory mappings to be considered

The chip memory mapping (1)

Defined by the HW designers

Used by the address decoder at
simulation time

The SystemC memory mapping (2)

Shared by the SW stack

Host machine dependent

Contains standard sections
Program in .text
Initialized data in .data
Uninitialized data in .bss

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 10 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Unifying the memory mapping

A uniform memory mapping is required to

Avoid software coding constraints

Accurately model interactions between hardware components and software
applications

Model Symmetric Multi-Processor like architectures

Our choice:

Use the SystemC memory mapping only

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 11 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Proposed Solution

Proposed Solution

Use SystemC memory mapping only

Hardware components mapping

HW components are modeled in SystemC

For each modeled register, a corresponding
address exists in the SystemC process
mapping

Use the register address in the SystemC
mapping

HW components must implement their
real register mappings

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 12 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Proposed Solution

Proposed Solution

Use SystemC memory mapping only

Hardware components mapping

HW components are modeled in SystemC

For each modeled register, a corresponding
address exists in the SystemC process
mapping

Use the register address in the SystemC
mapping

HW components must implement their
real register mappings

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 12 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Proposed Solution

Proposed Solution

Use SystemC memory mapping only

Software section mapping

Addresses of program and data sections
obtained at compilation time are used
directly

Other memories are considered as HW
components

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 13 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Proposed Solution

Proposed Solution

Use SystemC memory mapping only

Software section mapping

Addresses of program and data sections
obtained at compilation time are used
directly

Other memories are considered as HW
components

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 13 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Proposed Solution

Proposed Solution

Use SystemC memory mapping only

Software section mapping

Addresses of program and data sections
obtained at compilation time are used
directly

Other memories are considered as HW
components

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 13 / 1



Efficient Implementation of Native Software Simulation for MPSoC Efficient Native Simulation for MPSoC

Proposed Solution

The final memory mapping is obtained
at simulation time

Each mapped component provides
its base address and size

SW and HW rely on the same
memory mapping

The consistency of this memory
mapping is ensured by the
workstation

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 14 / 1



Efficient Implementation of Native Software Simulation for MPSoC Approach Analysis

Approach Analysis

Code Reuse

Native compilation of the SW stack
for T.A. simulation

Cross compilation of the same source
code for low level simulations

Coding constraints (TIMA)

HAL API must strictly be used

Direct C pointer to access device
registers are forbidden

int * adc status = ADC BASE;
*adc status = 0x01F0; /*FORBIDEN*/
/* Correct use:*/
HAL WRITE(UINT32,adc status,0x01F0);

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 15 / 1



Efficient Implementation of Native Software Simulation for MPSoC Approach Analysis

Approach Analysis

Code Reuse

Native compilation of the SW stack
for T.A. simulation

Cross compilation of the same source
code for low level simulations

Coding constraints (TIMA)

HAL API must strictly be used

Direct C pointer to access device
registers are forbidden

int * adc status = ADC BASE;
*adc status = 0x01F0; /*FORBIDEN*/
/* Correct use:*/
HAL WRITE(UINT32,adc status,0x01F0);

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 15 / 1



Efficient Implementation of Native Software Simulation for MPSoC Approach Analysis

Approach Analysis

Code Reuse

Native compilation of the SW stack
for T.A. simulation

Cross compilation of the same source
code for low level simulations

Coding constraints (TIMA)

HAL API must strictly be used

Direct C pointer to access device
registers are forbidden

int * adc status = ADC BASE;
*adc status = 0x01F0; /*FORBIDEN*/
/* Correct use:*/
HAL WRITE(UINT32,adc status,0x01F0);

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 15 / 1



Efficient Implementation of Native Software Simulation for MPSoC Approach Analysis

Proposed Solution

Proposed Solution

Use SystemC memory mapping only

Support of pointers to physical memory

Handlers for exceptions ’SIGSEGV’ and
’SIGBUS’ are used to remap the address

The corresponding model for the Bus
access is executed

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 16 / 1



Efficient Implementation of Native Software Simulation for MPSoC Approach Analysis

Approach Analysis

Memory representation

Accuracy of the memory representation

Shared and local memories can be modeled

Hardware components implementation

Accuracy of the components registers mapping

Meet the requirements of device driver development

Drawback

Sections and devices registers base addresses are different

Sizes of some sections are different (e.g. .text, stack)

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 17 / 1



Efficient Implementation of Native Software Simulation for MPSoC Approach Analysis

Approach Analysis

Simulation and Validation

Allow real processor parallelism (SMP like architectures)

Simulation speed-up of the native based approaches

Validation of all the software applications

Validation of device driver and HDS above the HAL

Functionnal validation of hardware

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 18 / 1



Efficient Implementation of Native Software Simulation for MPSoC Conclusion & Future Work

Conclusion

A SystemC-base MPSoC implementation methodology

Flexibility on modeled architectures

Realistic memory mapping representation

High simulation speed to allow architecture exploration

Software source code reuse

Directly cross-compiled and used on target processors

No modifications needed

No strict C coding rules, the code just has to respect the HAL API

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 19 / 1



Efficient Implementation of Native Software Simulation for MPSoC Conclusion & Future Work

Future Work

Future Work: Efficient software annotation techniques

Considering the processor internal architecture and parallelism

Complex processor type (DSPs)

Future Work: Efficient HdS model generation

Encapsulating the HdS in IP-XACT

Extracting the HdS model from the IP-XACT platform model

Frédéric Pétrot & Eugenio Villar () SoftSoC Open Workshop - Grenoble, France October 14th 2009 20 / 1


