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SOFTSOC
Lets Focus on Binary…

• SW IP can be delivered in source or binary 
form

• Source code is more abstract – Source 
code is actually a mean to shield from 
some hardware dependencies 

• Binary only delivery won't go away 
anyway: binary-only-deliveries, specialized 
compute intensive code, etc 

• In this part of the talk, software will mean 
binary software
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SOFTSOC What a piece of software does
vs. what a piece of software is

• Software for what it does. Keywords are
– Signal processing, Video compression, Codecs, 

Baseband radio, UMTS layers, CRC algorithms, 
etc.

• Software for what it is. Keywords are
– ARM binary, Libraries, intel ABI, POSIX API, 

Instruction Set, x86 IS, DSP IS, VxWorks, eCos, 
etc.



5   

SOFTSOC
SW for « What it does »

• Provides a business function taxonomy
– FFT, IFFT, CRC, dithering, etc.

• Provides relevant information to build 
systems from functions

• Answers the question
– What function do I have to write/reuse/buy to 

develop my application?
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• Details the dependencies of (binary) software 
towards
– Hardware

• Processor: instruction set, register set
• Memory: Memory map, cache sizes & parameters
• IP: registers banks, interruption

– Software
• Compiler tool chain: ABI (appl. binary interface)
• Other software: API (appl. programming interface)

– Operating system:
• Driver framework

• Basis for assembly rules of SW dedicated on a 
given hardware

SW for « What it is »
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• IP-Xact is all about structural description of 
HW IP
–  So should be its extensions for software

• We need first to express the necessary 
information required to decide if and how 
software can be assembled
– That's structural description of software
– Such description are mute about the business 

functions implemented by a piece of software

Structure Before Business
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• Software that compute cosine(x)
– The software exported API is named 

“mycosine.h”
– Exports a single function “double 

mycosine(double);”

• The SW IP
– Is named “mycosine”
– Is compiled for ia32 with SSE instructions

A Simple Software IP (1/2):
User Documentation
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SOFTSOC

• Dependency towards the processor
– Requires a ia32 processor with SSE instructions

• Dependency towards the calling protocol
– Export its API through ABI v3.3 of GCC for ia32

• Dependency towards API descriptions
– Is an implementation of “mycosine.h”

A Simple Software IP (2/2):
Detailed Dependencies
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SOFTSOC

• The software exported API
– Is named “myfft.h”
– Exports a single function

 “double[] myfft(double[], size_t n);”

• The software binary implementation
– Is named “myfft”

• Requires another SW IP
– mycosine

• Is compiled for ia32 with SSE instructions

Another Simple Software IP (1/2):
User Documentation
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SOFTSOC

• Dependency towards the processor
– Requires a ia32 processor with SSE instructions

• Dependency towards the calling protocol
– Obeys ABI v3.3 of GCC for ia32

• Dependency towards API descriptions
– Is an implementation of “my-fft.h”

• Depends on “my-cosine”

Another Simple Software IP (2/2):
Detailed Dependencies
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SOFTSOC

• A never-ending countdown (9 to 0) made 
of

• Hardware
– A 386 processor
– A HW IP: 7 segment decoder for LCD display

• Named “7-seg-lcd-decoder”
• Exports a single 8 bit register with bits 0-6 writeable

– The register is mapped at 0x00000140
• Software

– Closed software
– No operating system
– No RTC: Calibrated software loops 

HW IP-dependent SW IP (1/3):
User Documentation
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SOFTSOC

• Dependency towards the processor
– Requires a ia32 processor

• Dependency towards the calling protocol
– Obeys ia32 ABI v3.3

• Dependency towards API descriptions
– <none>

• Dependency towards the HW IP
– One instance of hardware IP “7-seg-lcd-

decoder”
– The memory map has it at 0x00000140

HW IP-dependent SW IP (2/3):
Detailed Dependencies



15   

SOFTSOC

• “One instance 7-seg-lcd-decoder”, means :
– The SW IP shall drive the IP through registers 

whose format is defined by the IP 

• “The memory map has the decoder at 
0x0140”
– The register is memory mapped
– The SW IP code shall have the rights to access it
– Its address is known and constant at 0x0140

• These are strong dependencies on the way 
the software is architectured/built

HW IP-dependent SW IP (3/3):
More Detailed Dependencies
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• A Processor access several Memory Banks
• Each Memory Bank is accessed at a single Base 

Address
• A Memory Bank is made of several Memory Cells
• A Register is a Memory Cell
• A HW IP exports several Memory Cells

Model of Dependencies
II. Hardware IP & Processor 
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Summary of SW/SW dependencies

• Automatic assembly is based on structural 
dependencies
– Not easy: Move progressively from simple to 

more complex cases
– Otherwise the README file will strike back

• Structural dependencies of HdS are
– Not only about dependencies over HW IPs
– But also about deeper SW dependencies

• Processors
• Compilers ABI
• Memory map
• Boot ordering
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CPU Interconnect

HW IP Prog. unit

Memory IO
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HdS:
The HW IP case

Hardware platform

Operating System
Hardware

Dependent Software

Application and Middleware Software
Application – Platform

Interface

Hardware – Software
Interface
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• More complex architectures
– More complex HdS
– More complex HdS models
– Increased dependencies w.r.t. OS, HW, 

µProcessor…

– Current ‘hand-written’ approach no longer valid

HdS:
The HW IP case
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  SW H264

HdS:
An structured approach

• Objectives
– Automate the HdS generation
– Automate the HdS model generation
– Capsulate dependencies w.r.t. OS, HW, 

µProcessor…

Video
Encoder
model

IP-XACT  

OS HdS HdS
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HW PlatformuProcessor H264

HdS1 - iowr, iord

Application SW
Application SW

HdS:
The Linux case
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• Depends on:
– Specific HW (H.264 HW component)
– uProcessor (only if assembler code)
– OS (through its register access functions)

• Objectives:
– Basic functionality
– Support low-level accesses to HW platform

• iord  read request
• iowr write request

HdS1:
The Linux case
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HdS2
dev_init, dev_exit, dev_open,

dev_close, dev_read, dev_write,
dev_ioctl, dev_irq_handler[n]

open, close, read, write, ioctl

OS 

mem_req
request_irq
Scheduler

…

Boot

OS API

HW PlatformuProcessor H264

HdS1 - iowr, iord

Application SW
Application SW

HdS2:
The Linux case
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• Depends on:
– OS/RTOS (Linux in example)
– Specific HW (H.264 HW component)
– HdS1

• Objectives:
– Establishes communication with OS/RTOS
– Defines OS/RTOS specific access functions
– Provides services through OS/RTOS general 

access functions

HdS2:
The Linux case
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HdS2
dev_init, dev_exit, dev_open,

dev_close, dev_read, dev_write,
dev_ioctl, dev_irq_handler[n]

open, close, read, write, ioctl

OS 

mem_req
request_irq
Scheduler

…

Boot

OS API

HW PlatformuProcessor H264

HdS1 - iowr, iord

Application SW
Application SW

HdS3:
The Linux case

HdS3 API config, reset, encode
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• Depends on:
– Specific HW (H.264 HW component)
– HdS2

• Objectives:
– Defines specific functions according to HW 

capabitilies
– Encapsulate complex functionality in specific 

functions
– Provides abstraction from HW platform

HdS3:
The Linux case
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HdS2
dev_init, dev_exit, dev_open,

dev_close, dev_read, dev_write,
dev_ioctl, dev_irq_handler[n]

open, close, read, write, ioctl

OS 

mem_req
request_irq
Scheduler

…

Boot

OS API

HW PlatformuProcessor H264

HdS1 - iowr, iord

Application SWApplication SW

Middleware:
The Linux case

HdS3 API config, reset, encode

GStreamer Plug-in CORBA Plug-in …

T
S

E

S
ensor



30   

SOFTSOC

• Depends on:
– HW platform capabilities
– HdS3

• Objectives:
– Adapts HdS3 to libraries and specific software
– Allows to merge HW platform capabilities
– In example: camera with H.264 video-encoded 

streaming
• Sensor + H.264 encoder + TSE

– Provides full abstraction from HW platform
• Only performance-dependent

Middleware:
The Linux case
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HW PlatformuProcessor H264

OS 

HdS2
XXX_Init, XXX_Deinit, XXX_Open,

XXX_Close, XXX_Read, XXX_Write,
XXX_IOControl, XXX_Init

mem_req
request_irq
Scheduler

…

Boot

OS API Open, Close, Read, Write, IOControl

GStreamer Plug-in CORBA Plug-in …

T
S

E

S
ensor

Application SW

HdS3 API config, reset, encode

HdS1 - INREG, OUTREG

HdS:
The WinCE case
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• The HdS structured approach
– Identification of the different components
– Maximization of the reusability

• OS
– Linux & WinCE are very similar
– Opportunities for HdS standardization
– Facilitates the development of tools

• Simulation,
• Synthesis,
• Verification, …

 HdS Stack Conclusions
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• IP-XACT
– Current IP-XACT is the “level 0” layer

• Only describes the HW platform

– SoftSoC opens IP-XACT to “n” levels of 
abstraction

– Easy identification of IP services at different 
levels

– Higher level  less knowledge of concrete 
services

HdS Stack Conclusions
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Extensions in IP-XACT for HDS

• New schema
– Structured and standardized electronic documentation 

dedicated to HDS structure (layers)
– in relation with HW platform in IP-XACT schema (level 0)

• Description of SW blocks and structure assembly
– Dependencies with HW processors, compilers, OS, etc.
– Interfaces: SW-SW, inter layers, SW-HW + definition of services
– Specificities for HDS1, 2, 3, middleware ?
– Views for several implementations

• Extensions of existing IP-XACT
– Reference to several drivers
– Description of performances (power, timing)
– Provided services toward the SW layers (list of standard 

services?)
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Solutions and tooling for HDS

Design environment (base on IP-XACT)
• SW architecture assembly (hierarchical) in a reuse and multi site 

context
• Manage though a comon cockpit the heterogenity of tools, methods 

and languages
• Automate the HW/SW codesign and mapping

Tools and engines
• Import/export to/from IP-XACT

– UML description of HDL layers
– Doc generation

• Design Verification
– Required services available on HW platform?
– Verify the access of HW registers by SW (though buses, bridges…)

• Etc…
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