
 Grenoble, October 14th 2009 2A708 SoftSOC page 1

SOFTSOC

SoftSoC Workshop – Grenoble, October 14th 2009

Christian FABRE – LETI – christian.fabre1@cea.fr

Eugenio VILLAR – Univ. of Cantabria – villar@teisa.unican.es

Emmanuel VAUMORIN – MAGILLEM – vaumorin@magillem.com

Hardware-defined Software:
Concepts & Architecture

mailto:christian.fabre1@cea.fr
mailto:villar@teisa.unican.es
mailto:vaumorin@magillem.com

2

SOFTSOC
Plan

1.HW/SW and SW/SW basic dependencies
1.SW Taxonomies
2.Case studies
3.Basic SW Dependencies Conclusions

2.Layered Hardware-dependant-Software
1.Introduction to HdS Stack
2.Linux
3.WinCE
4.HdS Stack Conclusion

3.IP Xact & HdS

3

SOFTSOC
Lets Focus on Binary…

• SW IP can be delivered in source or binary
form

• Source code is more abstract – Source
code is actually a mean to shield from
some hardware dependencies

• Binary only delivery won't go away
anyway: binary-only-deliveries, specialized
compute intensive code, etc

• In this part of the talk, software will mean
binary software

4

SOFTSOC What a piece of software does
vs. what a piece of software is

• Software for what it does. Keywords are
– Signal processing, Video compression, Codecs,

Baseband radio, UMTS layers, CRC algorithms,
etc.

• Software for what it is. Keywords are
– ARM binary, Libraries, intel ABI, POSIX API,

Instruction Set, x86 IS, DSP IS, VxWorks, eCos,
etc.

5

SOFTSOC
SW for « What it does »

• Provides a business function taxonomy
– FFT, IFFT, CRC, dithering, etc.

• Provides relevant information to build
systems from functions

• Answers the question
– What function do I have to write/reuse/buy to

develop my application?

6

SOFTSOC

• Details the dependencies of (binary) software
towards
– Hardware

• Processor: instruction set, register set
• Memory: Memory map, cache sizes & parameters
• IP: registers banks, interruption

– Software
• Compiler tool chain: ABI (appl. binary interface)
• Other software: API (appl. programming interface)

– Operating system:
• Driver framework

• Basis for assembly rules of SW dedicated on a
given hardware

SW for « What it is »

7

SOFTSOC

• IP-Xact is all about structural description of
HW IP
– So should be its extensions for software

• We need first to express the necessary
information required to decide if and how
software can be assembled
– That's structural description of software
– Such description are mute about the business

functions implemented by a piece of software

Structure Before Business

8

SOFTSOC
Plan

1.HW/SW and SW/SW basic dependencies
1.SW Taxonomies
2.Case studies
3.Basic SW Dependencies Conclusions

2.Layered Hardware-dependant-Software
1.Introduction to HdS Stack
2.Linux
3.WinCE
4.HdS Stack Conclusion

3.IP Xact & HdS

9

SOFTSOC

• Software that compute cosine(x)
– The software exported API is named

“mycosine.h”
– Exports a single function “double

mycosine(double);”

• The SW IP
– Is named “mycosine”
– Is compiled for ia32 with SSE instructions

A Simple Software IP (1/2):
User Documentation

10

SOFTSOC

• Dependency towards the processor
– Requires a ia32 processor with SSE instructions

• Dependency towards the calling protocol
– Export its API through ABI v3.3 of GCC for ia32

• Dependency towards API descriptions
– Is an implementation of “mycosine.h”

A Simple Software IP (2/2):
Detailed Dependencies

11

SOFTSOC

• The software exported API
– Is named “myfft.h”
– Exports a single function

 “double[] myfft(double[], size_t n);”

• The software binary implementation
– Is named “myfft”

• Requires another SW IP
– mycosine

• Is compiled for ia32 with SSE instructions

Another Simple Software IP (1/2):
User Documentation

12

SOFTSOC

• Dependency towards the processor
– Requires a ia32 processor with SSE instructions

• Dependency towards the calling protocol
– Obeys ABI v3.3 of GCC for ia32

• Dependency towards API descriptions
– Is an implementation of “my-fft.h”

• Depends on “my-cosine”

Another Simple Software IP (2/2):
Detailed Dependencies

13

SOFTSOC

• A never-ending countdown (9 to 0) made
of

• Hardware
– A 386 processor
– A HW IP: 7 segment decoder for LCD display

• Named “7-seg-lcd-decoder”
• Exports a single 8 bit register with bits 0-6 writeable

– The register is mapped at 0x00000140
• Software

– Closed software
– No operating system
– No RTC: Calibrated software loops

HW IP-dependent SW IP (1/3):
User Documentation

14

SOFTSOC

• Dependency towards the processor
– Requires a ia32 processor

• Dependency towards the calling protocol
– Obeys ia32 ABI v3.3

• Dependency towards API descriptions
– <none>

• Dependency towards the HW IP
– One instance of hardware IP “7-seg-lcd-

decoder”
– The memory map has it at 0x00000140

HW IP-dependent SW IP (2/3):
Detailed Dependencies

15

SOFTSOC

• “One instance 7-seg-lcd-decoder”, means :
– The SW IP shall drive the IP through registers

whose format is defined by the IP

• “The memory map has the decoder at
0x0140”
– The register is memory mapped
– The SW IP code shall have the rights to access it
– Its address is known and constant at 0x0140

• These are strong dependencies on the way
the software is architectured/built

HW IP-dependent SW IP (3/3):
More Detailed Dependencies

16

SOFTSOC

• A Processor access several Memory Banks
• Each Memory Bank is accessed at a single Base

Address
• A Memory Bank is made of several Memory Cells
• A Register is a Memory Cell
• A HW IP exports several Memory Cells

Model of Dependencies
II. Hardware IP & Processor

17

SOFTSOC
Plan

1.HW/SW and SW/SW basic dependencies
1.SW Taxonomies
2.Case studies
3.Basic SW Dependencies Conclusions

2.Layered Hardware-dependant-Software
1.Introduction to HdS Stack
2.Linux
3.WinCE
4.HdS Stack Conclusion

3.IP Xact & HdS

18

SOFTSOC
Summary of SW/SW dependencies

• Automatic assembly is based on structural
dependencies
– Not easy: Move progressively from simple to

more complex cases
– Otherwise the README file will strike back

• Structural dependencies of HdS are
– Not only about dependencies over HW IPs
– But also about deeper SW dependencies

• Processors
• Compilers ABI
• Memory map
• Boot ordering

19

SOFTSOC
Plan

1.HW/SW and SW/SW basic dependencies
1.SW Taxonomies
2.Case studies
3.Basic SW Dependencies Conclusions

2.Layered Hardware-dependant-Software
1.Introduction to HdS Stack
2.Linux
3.WinCE
4.HdS Stack Conclusion

3.IP Xact & HdS

20

SOFTSOC

CPU Interconnect

HW IP Prog. unit

Memory IO

Hardware DependentO
S

 D
ep

en
de

nt

H
ar

dw
a r

e
A

bs
t r

ac
tio

n

OS Abstraction

HdS:
The HW IP case

Hardware platform

Operating System
Hardware

Dependent Software

Application and Middleware Software
Application – Platform

Interface

Hardware – Software
Interface

21

SOFTSOC

• More complex architectures
– More complex HdS
– More complex HdS models
– Increased dependencies w.r.t. OS, HW,

µProcessor…

– Current ‘hand-written’ approach no longer valid

HdS:
The HW IP case

22

SOFTSOC

MEM
model

Ethernet
model

I2C/
BT656
model

uProcessor
model

Platform Model

Video
Encoder
(H264)

BUS

Ethernet
I2C/

BT656
MEMuProcessor

 SW H264

HdS:
An structured approach

• Objectives
– Automate the HdS generation
– Automate the HdS model generation
– Capsulate dependencies w.r.t. OS, HW,

µProcessor…

Video
Encoder
model

IP-XACT

OS HdS HdS

 SW
model

OS
model

HdS
model

HdS
model

H264

23

SOFTSOC

HW PlatformuProcessor H264

HdS1 - iowr, iord

Application SW
Application SW

HdS:
The Linux case

24

SOFTSOC

• Depends on:
– Specific HW (H.264 HW component)
– uProcessor (only if assembler code)
– OS (through its register access functions)

• Objectives:
– Basic functionality
– Support low-level accesses to HW platform

• iord  read request
• iowr write request

HdS1:
The Linux case

25

SOFTSOC

HdS2
dev_init, dev_exit, dev_open,

dev_close, dev_read, dev_write,
dev_ioctl, dev_irq_handler[n]

open, close, read, write, ioctl

OS

mem_req
request_irq
Scheduler

…

Boot

OS API

HW PlatformuProcessor H264

HdS1 - iowr, iord

Application SW
Application SW

HdS2:
The Linux case

26

SOFTSOC

• Depends on:
– OS/RTOS (Linux in example)
– Specific HW (H.264 HW component)
– HdS1

• Objectives:
– Establishes communication with OS/RTOS
– Defines OS/RTOS specific access functions
– Provides services through OS/RTOS general

access functions

HdS2:
The Linux case

27

SOFTSOC

HdS2
dev_init, dev_exit, dev_open,

dev_close, dev_read, dev_write,
dev_ioctl, dev_irq_handler[n]

open, close, read, write, ioctl

OS

mem_req
request_irq
Scheduler

…

Boot

OS API

HW PlatformuProcessor H264

HdS1 - iowr, iord

Application SW
Application SW

HdS3:
The Linux case

HdS3 API config, reset, encode

28

SOFTSOC

• Depends on:
– Specific HW (H.264 HW component)
– HdS2

• Objectives:
– Defines specific functions according to HW

capabitilies
– Encapsulate complex functionality in specific

functions
– Provides abstraction from HW platform

HdS3:
The Linux case

29

SOFTSOC

HdS2
dev_init, dev_exit, dev_open,

dev_close, dev_read, dev_write,
dev_ioctl, dev_irq_handler[n]

open, close, read, write, ioctl

OS

mem_req
request_irq
Scheduler

…

Boot

OS API

HW PlatformuProcessor H264

HdS1 - iowr, iord

Application SWApplication SW

Middleware:
The Linux case

HdS3 API config, reset, encode

GStreamer Plug-in CORBA Plug-in …

T
S

E

S
ensor

30

SOFTSOC

• Depends on:
– HW platform capabilities
– HdS3

• Objectives:
– Adapts HdS3 to libraries and specific software
– Allows to merge HW platform capabilities
– In example: camera with H.264 video-encoded

streaming
• Sensor + H.264 encoder + TSE

– Provides full abstraction from HW platform
• Only performance-dependent

Middleware:
The Linux case

31

SOFTSOC

HW PlatformuProcessor H264

OS

HdS2
XXX_Init, XXX_Deinit, XXX_Open,

XXX_Close, XXX_Read, XXX_Write,
XXX_IOControl, XXX_Init

mem_req
request_irq
Scheduler

…

Boot

OS API Open, Close, Read, Write, IOControl

GStreamer Plug-in CORBA Plug-in …

T
S

E

S
ensor

Application SW

HdS3 API config, reset, encode

HdS1 - INREG, OUTREG

HdS:
The WinCE case

32

SOFTSOC

• The HdS structured approach
– Identification of the different components
– Maximization of the reusability

• OS
– Linux & WinCE are very similar
– Opportunities for HdS standardization
– Facilitates the development of tools

• Simulation,
• Synthesis,
• Verification, …

 HdS Stack Conclusions

33

SOFTSOC

• IP-XACT
– Current IP-XACT is the “level 0” layer

• Only describes the HW platform

– SoftSoC opens IP-XACT to “n” levels of
abstraction

– Easy identification of IP services at different
levels

– Higher level  less knowledge of concrete
services

HdS Stack Conclusions

34

SOFTSOC
Plan

1.HW/SW and SW/SW basic dependencies
1.SW Taxonomies
2.Case studies
3.Basic SW Dependencies Conclusions

2.Layered Hardware-dependant-Software
1.Introduction to HdS Stack
2.Linux
3.WinCE
4.HdS Stack Conclusion

3.IP Xact & HdS

SOFTSOC

35

Extensions in IP-XACT for HDS

• New schema
– Structured and standardized electronic documentation

dedicated to HDS structure (layers)
– in relation with HW platform in IP-XACT schema (level 0)

• Description of SW blocks and structure assembly
– Dependencies with HW processors, compilers, OS, etc.
– Interfaces: SW-SW, inter layers, SW-HW + definition of services
– Specificities for HDS1, 2, 3, middleware ?
– Views for several implementations

• Extensions of existing IP-XACT
– Reference to several drivers
– Description of performances (power, timing)
– Provided services toward the SW layers (list of standard

services?)

SOFTSOC

36

Solutions and tooling for HDS

Design environment (base on IP-XACT)
• SW architecture assembly (hierarchical) in a reuse and multi site

context
• Manage though a comon cockpit the heterogenity of tools, methods

and languages
• Automate the HW/SW codesign and mapping

Tools and engines
• Import/export to/from IP-XACT

– UML description of HDL layers
– Doc generation

• Design Verification
– Required services available on HW platform?
– Verify the access of HW registers by SW (though buses, bridges…)

• Etc…

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36

