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Abstract! - At the beginning of the design process, the
allocation of each system component has to be decided.
The exploration of all the possible allocation
combinations requires a huge amount of performance
evaluations. As a consequence, it is mandatory to find
techniques capable of obtaining extremely fast
evaluations with minimal designer effort. Among
simulation techniques, native co-simulation is the most
promising one for providing this kind of results.
However, previous approaches require completely
refined SW code to be explored. Addresses, protocol
encapsulation and drivers are required in order to model
communication mechanisms and evaluate the
communication impact in system performance. This
paper proposes an alternative solution capable of
modeling initial, functional SW codes, evaluating
communication impact without requiring any
communication refinement.
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I. Introduction

The evolution of electronic technology has enabled the
design of increasingly complex systems. System
functionality is usually composed of several components
which are deployed on powerful HW platforms containing
several processors. Additionally, some of these components
can also be implemented as application-specific HW in order
to optimize system performance. As a consequence,
architectural mapping decisions are turning into a critical
step in electronic design processes.

Once engineers receive the system models described in
languages such as UML, MARTE, AADL, etc. and face the
task of starting the implementation process, the first step is to
decide the allocation of the different system components.
These decisions condition the rest of the design process, so it
is required to define adequate mechanisms to ensure optimal
mappings. To do so, the resulting performance of all the
different allocation possibilities has to be evaluated. Then
these estimations can be used to lead the decision process.
However, the initial code of the different components is
limited to pure functional code, resulting from algorithmic
development. In that context, codes has no the required
refinement to deploy and communicate the SW components
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in different HW resources. Thus, the challenge is how to
evaluate the different allocations with such initial codes
minimizing exploration simulation times and designers
effort.

In that context, the most exhaustive the exploration is, the
most adequate the solution will be. However, the resulting
amount of combinations considering all the possible
permutations of functional components on the HW platform
resources can be a really huge number. In order to obtain
these estimations in a feasible time, fast tools capable of
exploring the multiple combinations while requiring minimal
design effort are required.

Several solutions to obtain performance estimations of
electronic designs have been proposed in the literature.
Static solutions [1,2] are usually applied for obtaining worst
case execution times (WCET). However, those results are
usually too pessimistic for initial evaluations. Furthermore,
WCETs are not very useful at this level, since the use of
initial, unrefined codes makes impossible to guarantee the
correctness of the bounds. Additionally, the effort and time
required to apply these techniques to very large, configurable
systems can result extremely high.

Among dynamic techniques, virtual platforms based on
instruction set simulators (ISS) [3,4] or in virtualization
[5,6,7] can be used for evaluating the effect of executing a
code in a certain processor or platform. However, these
solutions require having the SW code completely adapted for
the target platform. In these tools, complete binary target
codes are needed for correct simulation.

Virtual platforms built with these technologies are based
on the combination of models of all the HW components of
the platform. Thus, SW components require knowing how to
communicate with the rest of the system. This request can be
easy to solve for memory transfers, but it becomes more
complex to support in other cases, for example when trying
to access peripherals, with their specific registers, addresses
and operation modes, when accessing a component in other
bus through bridges, when it is needed to use a DMA, or in
networked communications, where it is mandatory to know
protocols, addresses, package encapsulation, etc. Thus, when
multiple resource allocations are evaluated, multiple code
porting has to be done, wasting effort in developing
implementations from which it will not be possible to take
any advance in the future. Additionally, with these tools it is
not possible to perform a high-level simulation where the
communications among components are incompletely
specified.

Some approaches based on native execution of annotated
code have been proposed [8,9] to obtain faster system
evaluations. Additionally, as they are based on native
simulation it is not strictly required to dispose of a set of




completely refined ports of the system for the different
allocations. Additionally, some works on obtaining accurate
performance annotations of the SW components has been
proposed [10,11]. Side effects as bus or peripheral accesses
are modeled apart. Thus, performance of the system
functionality and communications are analyzed in a partially
separated way.

Applying that, the proposal described in this paper
presents a solution to simulate different allocations (HW and
SW) of the system components using initial, functional
codes, without any communication refinement. The solution
is based on the use of annotated functional models running in
parallel with a model of the system architecture centered on
communications (“communications model”). The functional
model is implemented using a previous tool called SCoPE.
Thus, this work focuses on communication modeling and
integration between the two models.

Using the two combined models, each time two
components of the functional models want to communicate,
the initiator sends a request to the communication model.
The communication model analyses the impact of the
transfer, and it returns the results obtained to the annotated
functional model. As a result communication times and
performance can be integrated in the system simulation.

The way the communication model extract communication
paths, how overheads are obtained and the mechanisms used
to connect both models are described in next sections. After
the state of the art, the paper analyzes the SCoPE tool [9]
and presents all the modifications required to transform it
into a tool capable of automatically modeling different
component allocations. Then, it is described how
communication paths among components are extracted and
how communications performance are evaluated. A
description of the mechanism for connecting both models
follows. Finally, some results are provided to demonstrate
the validity of the approach.

II. State of the art

Simulation environments for design space exploration
have to overcome several challenges. Mainly, these
simulations require achieving very fast speeds, considering
the large amount of points to be simulated. Thus, modeling
techniques have to be able of evaluating all the
configurations selected by the DSE tools without provoking
additional delays.

While HW simulation can be performed at different
abstraction levels using appropriate languages such as
VHDL, Verilog, System-Verilog and SystemC [12],
efficient, sufficiently accurate SW simulation required of
additional research. The three main methodologies used for
building virtual platforms on top of which simulate the
embedded SW are Instruction-Set Simulation (ISS),
virtualization with binary translation and native co-
simulation.

The first solution, ISS-based HW/SW co-simulation, is
the main industrial platform simulation technology supported
by mature commercial tools offered by all the major vendors
[3, 4]. The commercial modeling and simulation tools
currently available are based on previous research activity in
academia. In [13] a generic design environment for
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multiprocessor system modeling was proposed. The
environment enables transparent integration of ISSs and
prototyping boards. As an evolution of this work, in [14] a
SystemC infrastructure was developed to model architectures
with multiple ARM cores. However, ISS-based simulations
results in very large simulation times, which makes its use
not recommended for design space exploration.

Another technology proposed for SW simulation is using
virtualization together with binary translation. The binary
code of the target processor is dynamically translated to the
host executing the same functionality. Qemu [5], Open
Virtual Platforms [6] and Simics [7] are three of the most
representative examples of virtual platforms. As a
comparison, simulations performed by QEMU are about 5 to
20 times slower than native simulation [15] and obtaining
performance and power consumption estimations using
virtualization is still an open line research.

Native co-simulation is based on the direct execution of
the source code on the host. Simulation speed can be
improved avoiding the use of processor models at the
expense of some estimation accuracy in order to enable an
efficient system evaluation. Considering the ITRS'07,
estimation errors of about 30-40% can be accepted for initial
system assessments [16]. Using either static [1, 2] or
dynamic techniques [11, 17, 18] the SW execution times are
estimated and annotated to obtain timed simulations of the
application SW. A simple version of this technique has been
implemented in a commercial tool [19].

An integral part of the embedded SW is the RTOS used.
Thus, native SW simulation is based on using an abstract OS
model. As the RTOS functionality is abstracted, this
approach is faster than the HAL-based one. Several
alternatives have been proposed, from generic [20, 21, 22] to
real OS models [23, 24]. The latter approach has the
advantage that, when efficiently exploited, a more accurate
model of the underlying RTOS can be achieved. This
additional efficiency is obtained by combining the source-
code execution time estimation with the OS model providing
more accurate results. The work in [25] provides an analysis
of the impact of including the OS time in the overall system
estimation.

However, none of these modeling methodologies are
aimed at complex Multi-Processor systems on chip
(MPSoC). Dynamic task mapping, drivers and interrupt
management required in MPSoC modeling are not covered
by the previous techniques with the simulation speed
required for performance estimations and system
dimensioning. To the best of out knowledge, only two works
have been proposed for modeling such complex systems
using native simulation [8,9]. Additionally, the second one
has been initially adapted for design space exploration [9] so
it has been selected as starting point for this work.

But previous approaches require the SW code to be
explored to include complete information about
communication mechanisms if communication impact has to
to be considered. Addresses, protocol encapsulation and
drivers are required for that goal. To solve that limitation at
the beginning of the design process, this paper proposes a
solution capable of evaluating that without adding additional
information or design effort.



III. Problem definition

Most design flows start defining separately the system
functionality and the HW infrastructure. Then, co-design
process begins by deciding the optimal resource allocation.

In this paper, it is considered that the method used to
decide the allocation of the functional components is based
on a design space exploration process. The exploration flow
considered for obtaining this purpose is the following (figure
1). First, the code is annotated and compiled generating a
simulator executable capable of modeling all the
configurations. Then, a design space explorer tool is called.
This tool starts a loop where the simulator executable is
called as many times as points in the design space have to be
evaluated. Finally, the explorer tool analyzes the data obtain
and proposes the optimal solutions. In [26] the interfaces
between the simulation infrastructure and explorer tools are
presented, so the rest of the paper focuses only on the
simulator itself.
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Figure 1: Allocation exploration flow

As a consequence of the point in the design flow, the
inputs received by the simulator for the allocation
evaluations have several characteristics that can be extracted.

First, a platform independent model of the system
functionality or, at least, an executable code for all the
system components is available. These codes are usually
implemented using an underlying infrastructure capable of
providing facilities for inter-component communication,
synchronization and other services. SystemC or the native
operating system are usually employed as infrastructures
supporting the execution of the entire model in order to
enable checking the functionality.

Taking advantage of that, the proposed solution starts
from these executable models, adding performance
annotations and HW resource allocation effects to the model.
Then, the system performance resulting on the combination
on the different component allocations can be estimated.

However, the effects caused by the communications
among all system components are not considered. Functional
model is platform independent, so resource allocation for
each component is added during the exploration process,
when the code is annotated. As a consequence, the functional
model has no information at all about what the system has to
do to perform these communications. In fact, for each
simulation of the exploration loop, components are allocated

to different resources, so how communications among tasks
are made is something that changes on each simulation.

Thus, to model system communications, it is required to
extract the path followed by the information from initiator to
target on each simulation, model the performance and
include the results in the simulation.

The infrastructure developed has been integrated in a
design flow including UML/MARTE and Eclipse. The
modeling capabilities of these elements have been used to
improve the capabilities the designer has to drive the
evaluation process, as is shown in following sections.
Nevertheless, their use is not mandatory for the application
of the technique itself, and they can be avoided it the
proposed solution is integrated in another infrastructure.

IV. Modeling communication paths

To perform accurate modeling of the system
communications, the first step is to know the paths the
information follows on each transfer. Usually, SW systems
are built creating several layers. One of the lower system
layer is the communication layer. Each communication in the
functional model is not implemented in a completely
different way. Communications usually take advantage of the
services of this layer, to reduce the design effort.

As a consequence, similar communications make use of
the same service in the communication layer, resulting in a
similar communication type. For example, it is common to
find that in a system, transfers sent from all processes in
processor “a” to processes in processor “b” use the same
lower layer service, being preformed in the same way.

Taking advantage of that, it can be accepted that it is not
required to extract the communication path for any
communication make in the system, but only extract the
paths required to support communication among all the HW
resources of the system: processor and application-specific
HW. This simplification substantially reduces the
computational effort required to model communications
during system simulation. As a result, simulation overhead
implied by the communication model is minimal, something
which is critical if we want to explore large design spaces,
with thousands of possible points.

To minimize the simulation time, the proposed approach
is to obtain the resource-to-resource paths for each
simulation just before it starts. Then, the transfer can be
modeled only indicating the initiator and target.

To obtain these paths, two solutions has been
implemented in this work. The first one extracts the paths
automatically from the platform description used in [9] and
described in [26]. Additionally, a solution has been proposed
to enable the designer to fix some of these paths manually,
instead of letting the tool to select one. To do that, an XML
file format has been defined, where the path is described. An
Eclipse plug-in has been developed to enable describing the
paths in UML/MARTE, but these details are out of the scope
of the paper, which is centered on the simulation itself.

The path extracting process is the following:

- First the user defined paths are read, if any.
- Second, if there is a path defined to connect resource
“A” with resource “B”, but not the opposite, it is analyze if
the same path can be used in the opposite direction.
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- Finally, if no paths are defined to communicate two
resources, the automatic path mechanism is used.
- If no path is found to connect two elements, an error
is only reported if it is requested during simulation.

1v.1 Automatic path extraction process

To extract the communication path between two HW
components, a branch and bound like algorithm has been
implemented. Information about the HW platform is
obtained from the XML file used as input by [9]. In this file
all HW instances are listed, including their interconnections.
Interconnection information also includes master/slave
information. Summarizing, the path extractor knows who is
connected to each HW component and in which direction.

The algorithm looks for the faster path capable of
communicating initiator and target. Additionally it is defined
an intermediate component where information can be
exchanged (a memory or a network).

To extract the path, two trees are created containing all the
elements with an already known connection path with the
initiator or the target. Each node of the tree represents a HW
component and it is linked in the tree to the components
connected to it, as described in the XML file.

The procedure starts identifying initiator and target as leaf
in their respective trees. Then it is checked if there are
common leafs in both trees. If not, the HW components
connected to the leaf components in the XML file are added
as new leafs, and the checking is performed again. When a
hit is find, a complete path has been found. The cost of the
path is set as maximum cost and only faster solution are
searched. To do that, all the branches which current cost is
lager than this maximum are pruned. When all branches have
been bounded, the minimal path is selected.

The radial structure of the algorithm helps finding a fast
solution earlier, since usually these solutions has an smaller
amount of components in the path.

w2 User defined paths

In certain cases, the user can prefer to provide a path
instead of letting the tool to automatically take the decision.
When multiple possible paths can be found, it can be
interesting to the user to have a way to provide it, in order to
ensure that the simulation will follow designer decisions.

To do that, it has been enabled the possibility of using a
UML/MARTE sequence, diagram to describe the
communication path in Eclipse. Then, a plug-in generates a
XML file indicating the paths selected. The resulting XML
file has the following format:

<interconnections>

<connection origin="processorl"
target="processor10" link="memory1">
<component name="comp1">
<component name="comp2">

<component name="memory1">
<component name="last_comp">
<connection/>

<connection ... >
<interconnections>
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V.3 Communication model

In order to create a model of the system capable of
evaluating the impact of communications, the elements
provided by [9] to create the platform models have been
minimally modified. The tool provides models of buses,
memories, DMA, bridges, networks and network interfaces,
which are developed on top of a base class that handles the
TLM?2 protocol proposed by the OSCI.

First, TLM2 protocol is based on the use of structs for
transferring the communication information. These structs
include information about the type of communication
(read/write), address, package size, data buffer, etc.
Furthermore, the struct includes a void pointer for user-
defined additional information.

To model only communications creating an infrastructure
capable of working in parallel with the functional model, a
new package type has been defined. This package contains
all the members of the struct, but the data buffer, with is null.

The inherited class, has two operation modes, for
communication channels (buses/networks) and for HW
components. In the modification performed, the part
inherited by the HW components has been extended to detect
the new package type. When the package is detected, the
HW component wait the reception time, indicated by the
component parameters, and automatically returns, indicating
that transfer has been completed. No functionality in the HW
component is executed.

Second, system communication paths are supposed as a
combination of two simple communication structures:

- HW component / Channel / HW Component, and

- HW Component / HW Component.

Thus, the internal modeling of a communication transfer
extract all the simple communication structures in the path,
and inject a package of the new type in all the initiators of
the simple communications and gets the delay in all the
structures. As a consequence, total communication delay is
estimated. Additionally, as channels are used as in normal
communications, contency and other side effects are
considered.

V. Functional/communication model link

As stated before, the functional model used in this work
considers that services are accessed by clients through
function calls. Thus, the execution flow of each task changes
from one component to another, and usually from one HW
resource to another, depending on the allocation of each
component. The solution proposed to model this change of
HW resource is to consider a global operating system and
use the processors' mask to fix where the tasks is executing
at each moment. However, the last problem we found is how
to transform the original function calls in the functional
model to do so, in an automatic manner where no additional
recoding effort from the designer is required.

The basic idea to do that is to generate a
Container/Component  infrastructure  for all  system
components. Here, the Component contains the part of the
functional model related with the system component. The
Container is a wrapper in charge of detecting inputs and
outputs from the component (Figure 3).



Component and Container both provide the same
interfaces, with the same function prototypes. Each time a
Component requests a service from another Component, the
call is redirected to the Container of the second component
instead of the Component itself. Then, the Container calls
the communication model indicating the initiator, target and
size of information to transfer. Information size depends on
the arguments of the function. “malloc” and “calloc”
functions have been wrapped to save the size of each buffer
created, to enable getting correct transfer sizes

After that, the same function in its Component is called to
execute its functionality. When the function returns, the
Container calls again the communication channel, to model
how the service returns the obtained results, and continues
the execution in the first Component. The modification of
the function call can be done by changing the pointer to the
interface called or by using “#define” clauses, avoiding
manual recoding.
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Thus, the problem is limited to how to create
automatically the Container for each component. For doing
so, information in high level models such as UML/MARTE
is required. In these models, information about the
components in the system, the interfaces, the functions on
each interface and from where they are called is present.
From this information, the Container and the modification in
the function calls can be done through specific generators. In
our work, a generator from UML/MARTE has been
developed in Eclipse to create the required code, but its
internal details are far from the scope of this paper.

To generate the Container, the generator creates a code
describing the functions provided. For example, in the
following code, a container implementing an interface with
three functions is shown:

CREATE_CONTAINER(ProcessingComponent):INHERIT INTER

FACES(public ImageProcessor_PI){
COMPONENT(ProcessingComponent);
SPORADIC_FUNCTION(startOperation,m_ImageProcessor);
SPORADIC_FUNCTION(stopOperation,m_ImageProcessor);

SPORADIC_FUNCTION(getState,m_ImageProcessor state);
k

Internally, each function is implemented by a Macro as:

#define SPORADIC_FUNCTION(function, arg_type) \
void function(arg_type argl) {\

int node = getCurrentProc(),\

if(node!=m_node){\
chageCurrentProc(m_node),\
modelC ommunication(node, m_node, size),\
component->function(argl )\
modelC ommunication(m_node, node, size),\
chageCurrentProc(node),\

Jelsef\
container->function(argl )\

ey
VI. Examples and results

To demonstrate the possibilities the proposed approach
can provide to system designers when deciding the resource
allocations, an example based on a H264 coder has been
applied. The coder algorithm used has 8 concurrent tasks,
conforming a functional modeling running on top of a Linux
system.

In the proposed example, each task can run on top or an
ARMDO processor at 200MHz, another ARM9 at 100MHz, on
a Leon processor or as application-specific HW. Thus, all
the possible combinations of component allocations are 8=
4096. The two ARMO processors are placed in separated
buses, both with access to another bus with a memory
connected. Additionally, this structure, the Leon processor
and the AS-HW are in different nodes of a network.

Through the adequate “makefile”, 4 dynamic libraries for
each one of the 8 components have been created with the
different annotations required to model the 4 possible
allocations. As the annotations are done automatically, no
designer effort has been required for that step.

The first result extracted is that the proposed infrastructure
was capable of simulating the functionality and detecting the
communication paths automatically without requiring any
additional effort from the designer.

An external tool, the design space explorer tool
M3Explorer [27], has been used to automatically collect the
performance of the 4096 possibilities, using the SCoPE
simulator combined with the infrastructure presented in this
paper. As a result, the explorer tool has reported a Pareto set
including the optimal configurations.
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The overall time required to perform the complete
exploration (4096 simulations) has been of about 5 hours
without any manual intervention during them, which contrast
with the almost 3 hours required to execute a single
implementation in a ISS-based infrastructure developed for
this model.

About estimation accuracy, as communication delays have
not been involved in the presented model, no comparisons
with real implementations can be done. Nevertheless, the
accuracy completely depends on the annotation engine used,
which in previous works has demonstrated to achieve
estimation errors of about 20% at most [9].

VII. Conclusions

The paper shows that efficient resource allocation
exploration for large systems is possible in native simulation
requiring minimal designer effort. Starting from a functional
model and a graphical model such as UML/MARTE it is
possible to transform the pure functional execution in a
simulation where effects provoked by real HW resources can
be evaluated, including communication effects.

The use of native co-simulation as basic infrastructure to
model the system while considering the different possible
allocations, enables obtaining fast performance estimation
with a low designer effort, since it is not required to
implement all possible system ports to enable component
communications.

The annotation techniques used for native co-simulation
enable modeling separately the performance of components
functionality and communications. This solution enables
modeling separately the performance of the functionality and
the system communications.

Using an algorithm of branch and bound, feasible
communication paths can be automatically found.
Additionally, the designer can fix paths if preferred. Then,
dividing the paths in minimal structures of HW Component,
- Channel (bus or network) - HW Component,
communication effects can be modeled by introducing
packages of the required size in the first component and
extracting them in the last one.

Finally, the wuse of high-level models, such as
UML/MARTE models and generators, provides the
information required to build the Component/Container
infrastructure. This infrastructure wraps component codes,
enabling the modeling of different allocations and their
communications within the same infrastructure.

Summarizing, all the modifications required to evaluate
the performance of the different allocation possibilities can
be obtained automatically, minimizing the designer effort
required for exploring the design space.
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