

Actas de las
III Jornadas de Computación Empotrada (JCE)

Editores
Jesús Barba, Miguel Damas, Jesús González, Gustavo Marrero,

Antonio Martínez, Jorge Portilla, Francisco Ramos, Goiuria Sagardui, Miguel A. Vega

Organiza
Grupo de Arquitectura y Tecnología de Computadores (GATCOM)

Universidad Miguel Hernández

Elche (Alicante), 19-21 Septiembre 2012

Actas de las III Jornadas de Computación Empotrada (JCE)

Editores: Jesús Barba, Miguel Damas, Jesús González, Gustavo Marrero,
Antonio Martínez, Jorge Portilla, Francisco Ramos,
Goiuria Sagardui, Miguel A. Vega

ISBN: 978-84-695-4424-2

Servicio de Publicaciones. Universidad Miguel Hernández, Elche, 2012

Edición: 1a

Impresión: 1a

No de páginas: 143
Formato: 21 x 29.7
Materia CDU: 004 Ciencia y Tecnología de los ordenadores. Informática.

Reservados todos los derechos. No está permitida la reproducción parcial o total del contenido de esta publicación por
ningún procedimiento electrónico o mecánico, incluyendo fotocopia, grabación magnética o cualquier almacenamiento de
información y sistema de recuperación, sin el permiso previo y por escrito de las personas titulares del copyright.

Actas de las III Jornadas de Computación Empotrada (JCE)

Derechos reservados c© 2012 respecto a la primera edición en español por los autores.
Derechos reservados c© 2012 Servicio de Publicaciones de la Universidad Miguel Hernández.

1a Edición, 1a Impresión

ISBN: 978-84-695-4424-2
Depósito Legal: A-556-2012

Publicado por:
Universidad Miguel Hernández
http://www.jornadassarteco.org/

Créditos:
Diseño de portada: los editores.
Maquetación: los editores (utilizando el paquete LATEX ‘confproc’, versión 0.7 de V. Verfaille).

Impreso en Elche (España) por Limencop, S.L. — Septiembre 2012

http://www.jornadassarteco.org/
http://www.ctan.org/tex-archive/macros/latex/contrib/conferences/confproc/

Actas de las III Jornadas de Computación Empotrada (JCE), Elche (Alicante), 19-21 Septiembre 2012

Comité de programa

Beatriz Aparicio (Instituto de Astrofísica de Andalucía)
Egoitz Arruti (Universidad de Mondragón)
Armando Astarloa (Universidad del País Vasco)
Marta Beltrán (Universidad Rey Juan Carlos)
Oskar Berreteaga (Ulma Embedded Solutions)
Ignacio Bravo (Universidad de Alcalá de Henares)
David Castells (Universidad Autónoma de Barcelona)
Javier Castillo (Universidad Rey Juan Carlos)
Juan Pedro Cobos (Instituto de Astrofísica de Andalucía)
Julio Daniel Dondo (Universidad de Castilla la Mancha)
Javier Díaz (Universidad de Granada)
Juan Carlos Díaz (Universidad de Extremadura)
Leire Etxeberria (Universidad de Mondragón)
Eduard Fernández (Universidad Autónoma de Barcelona)
Antonio García (Universidad de Granada)
Juan Antonio Gómez (Universidad de Extremadura)
José María Granado (Universidad de Extremadura)
Juan Antonio Holgado (Universidad de Granada)
Miren Illarramendi (Universidad de Mondragón)
Juan Carlos López (Universidad de Castilla la Mancha)
Eva M. Ortigosa (Universidad de Granada)
Christian Morillas (Universidad de Granada)
Antonio Núñez (Universidad de las Palmas de Gran Canaria)
Gabriel Oliber (Universidad de las Islas Baleares)
Pilar M. Ortigosa (Universidad de Almería)
Alberto Ortiz (Universidad de las Islas Baleares)
Fernando Pardo (Universidad de Valencia)
Fernando Rincón (Universidad de Castilla la Mancha)
Maria J. Santofimia (Universidad de Castilla la Mancha)
Moisés Serra (Universidad de Vic)
Juan Manuel Sánchez (Universidad de Extremadura)
Roberto Uribeetxebarría (Universidad de Mondragón)
Félix J. Villanueva (Universidad de Castilla la Mancha)
Eugenio Villar (Universidad de Cantabria)

JCE2012 - v

The design of embedded systems is being challenged by

their growing complexity and tight performance

requirements. A synthetic, but sufficiently detailed model

of the system and its environment, fast performance

assessment technologies, and smart exploration of design

alternatives are required for a fast assessment of the

optimum design alternative. This paper focuses on the

former aspect, by presenting the COMPLEX

UML/MARTE modelling methodology, which introduces

novel and necessary aspects for speeding up architectural

exploration. This modelling methodology has been

integrated into the COMPLEX Design Exploration

framework, which has served to show through a

demonstrative example (an EFR vocoder) the applicability

and benefits of the proposed modelling approach.

Keywords

UML, MARTE, modelling, Design Space Exploration,

ESL, System Level Design.

I. INTRODUCTION

The design of embedded systems is in a highly

competitive context. The translation of a successful

design into a successful product highly depends on

becoming the first product in the market with new

complex functionalities fulfilling tight performance

constraints. In this scenario, the task of system engineers

becomes challenging. They require an early assessment

of the design alternatives, since about 90% of the overall

costs are determined at the first stages of the design [1].

At the same time, a right assessment becomes difficult

due to the complexity of applications and platforms,

whose performance is characterized by a diverse set of

factors, such as the software architecture of the

application; the architecture of the HW platform; how

the application functionalities are executed by the

processing resources of the platform; cache sizes;

memory sizes; and many others. Design Space

Exploration (DSE) is a key design activity [2] in charge

of enabling such an early assessment. A DSE framework

has three main requirements: (1) a modelling

methodology suitable for Design Space Exploration

(DSE), (2) tools able to produce fast and sufficiently

accurate performance metrics, and finally (3) an

exploration engine able to perform a smart search of the

overall design space. This paper focuses and contributes

to the first point.

A set of methodologies have enabled the capture of the

system architecture and main system parameters. A

special effort has been done to develop methodologies

based on the Unified Modelling Language (UML) [3],

supported by specialized profiles, such as SysML and

MARTE [4]. The MARTE profile is an OMG standard

that offers a rich set of extensions specifically suited for

the specification of embedded real-time systems.

MARTE enables building models containing detailed

information about the platform attributes and the system

architecture for enabling performance analysis.

However, the proposed system specification

methodologies are still limited for DSE purposes. In

these methodologies, the exploration of different

platform architectures, of different architectural

mappings, and even a small change in a design

parameter (e.g., a cache size) requires a manual change

of the model. Moreover, when the model is used for

producing an executable virtual system for a simulation-

based performance analysis, a regeneration of the

executable model is typically required. Model edition

and regeneration of the executable performance model

add to the simulation time at each iteration of the DSE

loop, and they have a non-negligible impact in the

exploration time, up to a point which can make the

exploration of a sufficiently wide design space

unaffordable. Current modelling methodologies also

lack ways for capturing within the model the output

performance metrics to be used by the objective

function(s) of the DSE process. Enabling their capture in

the model in a tool independent manner would enable

the direct relation of such metrics with the performance

constraints also captured in the model. Performance

constraints are mandatory, thus they impose a frontier

for the solutions to be considered as feasible solutions.

This paper presents a component based modelling

methodology based on UML/MARTE and explicitly

designed for supporting DSE. The methodology has

been developed as the entry point of the COMPLEX

framework [5], especially suited for DSE. Specifically,

the methodology supports the specification of a design

space, i.e., a set of design solutions, rather than a single

design solution. Moreover, the methodology supports

also explicit constraints and rules that limit the space of

solutions to those that can be of interest. The

methodology also supports the specification of a set of

output performance metrics, which are required as

inputs to the objective functions and/or to define

associated constraints on them. The methodology is

supported by a specific toolset developed in the

COMPLEX project. This toolset enables the automatic

generation, directly from the COMPLEX UML/MARTE

model, of an executable and configurable performance

model. This performance model is based on the SCoPE

technology [6], which through a fast simulation, enables

functional validation and provides a rich set of

performance metrics. The SCoPE performance model is

configurable and represents the design space captured at

the model. In each DSE iteration, before launching the

An Embedded System Modelling Methodology

for Design Space Exploration
F. Herrera, P. Peñil and E. Villar

University of Cantabria

F. Ferrero and R. Valencia

GMV

Actas de las III Jornadas de Computación Empotrada (JCE), Elche (Alicante), 19-21 Septiembre 2012

JCE2012 - 70

simulation, the executable model is configured, by

giving specific values to design parameters (e.g. a given

cache size), and defining a specific platform architecture

and architectural mapping. Each new configuration,

which represents a new design point to be explored,

requires neither an edition of the UML/MARTE model

nor a regeneration of the executable performance model.

The simulation of the performance model for each

design point provides performance metrics to a DSE

exploration tool (developed by COMPLEX partners as

an evolution of the Multicube Explorer [7] tool) which

decides the next design point to be explored. The

explanation of the whole COMPLEX toolset is out of

the scope of this paper. In this paper, we focus on the

modelling methodology.

The structure of the paper is as follows. Section II will

present the related work. Then section III introduces the

proposed methodology, presenting its main concepts and

showing how a system model is built. Section IV

explains the features of the methodology for specific

support of DSE, which constitutes the main contribution.

Section V shows the benefits of the modelling approach

through experimental results. Section VI gives the main

conclusions of this work.

II. RELATED WORK

Despite the relative recent development of the MARTE

profile, several works have proposed UML/MARTE

based methodologies. Gaspard2 [8][9] is a design

environment for data-intensive applications which

enables a MARTE description of both, the application

and the hardware platform, including MPSoC and

regular structures. Gaspard2 uses composite diagrams

and the MARTE profile for capturing both, application

and platform architectures. Gaspard2 tooling supports

the chaining of different model to model (M2M)

transformation tools. This facilitates the generation of

synthesis flows, and also of performance models.

Specifically, Gaspard2 supports the generation of

SystemC TLM models at the Programmers View Time

(PVT) level. It enables fast simulations, which speeds up

exploration. However, a change in a parameter or in the

architecture requires the edition of the model and

moreover, the re-generation of the TLM model.

MoPCoM [10] is another design methodology for the

design of real-time embedded systems which supports

UML and the MARTE profile for system modelling.

Specifically, MoPCoM uses the NFP MARTE profile

for the description of real-time properties; the HRM

MARTE profile for platform description; and the Alloc

MARTE profile for architectural mapping. Moreover,

MoPCoM defines three levels of generation. From all of

them, the second level, called Execution Modelling

Level (EML), targets the generation of models for

performance analysis, and it is suitable for obtaining

performance figures used in DSE iterations. However,

work reported in [10] mostly focuses on the Detailed

Modelling Level DML level, intended for

implementation, by enabling VHDL code generation.

Like in Gaspard2, exploration of architectural

alternatives requires the edition of the UML/MARTE

model and a re-generation of the executable

performance model.

The work of [11] proposed a UML/MARTE based

methodology in order to reduce the effort to capture the

set of architectural alternatives for design space

exploration. For it, instead of relying on an element

explicitly representing the allocation (e.g. an UML

association with the MARTE <<allocate>> stereotype),

[11] introduces activity threads. An activity thread (AT)

is a UML activity diagram where each path reflects a

design alternative, that is, an architectural mapping.

Co-Fluent methodology [12] provides a modelling

methodology relying on SysML and on MARTE which

uses the <<assign>> stereotype for expressing

allocations. However, they are used for modelling a

single allocation, thus a single implementation

alternative. The methodology captures application and

hardware architecture by means of composite diagrams

and SysML blocks. UML activity diagrams are used to

specify application execution flows. The MARTE HRM

profile is used for capturing the HW platform.

In [13], a methodology for supporting designers on the

evaluation of the HW/SW partitioning solutions,

specifically, to identify design points fulfilling the

timing constraints is shown. It proposes a way to depict

in one set of diagrams all possible combinations of

system configurations. By means of annotation of

MARTE non-functional properties and of the

application of schedulability analysis, the design space

is restricted to the design points fulfilling timing

requirements. However this methodology neither reports

optimum solutions, nor it relies on automated

technologies for the estimation of performance metrics.

III. MODELLING METHODOLOGY

A. Introduction

 The system modelling methodology described in this

paper is follows a component-oriented approach [14]

and applies the Model Driven Architecture (MDA) [15]

principles in the development of HW/SW embedded

systems. Moreover, the proposed approach makes this

methodology software centric [16] as it enables the

description of a platform independent model (PIM)

which can be fully allocated to a SW implementation,

and thus can be considered as an application model.

However, the methodology also enables to consider the

HW implementation of application components.

In Component-based Software Engineering (CBSE)

[14], the system is built as a composition of application

components interacting with each other only through

well-defined interfaces. Components are software units

that exhibit their interfaces (provided or required). This

way, the application can be split into clearly separable

and reusable blocks, improving the organization of the

product as well as its reusability and modularity.

The COMPLEX methodology supports the separation of

concerns. This separation is achieved by providing

distinct system views to the designer, in the shape of

UML packages, each one for every relevant aspect:

Actas de las III Jornadas de Computación Empotrada (JCE), Elche (Alicante), 19-21 Septiembre 2012

JCE2012 - 71

 Data View: captures the relevant data types of the
system, i.e., types of data exchanged at interfaces.

 Functional View: captures the functional structure
of the system, as a set of interfaces and a set of
classes implementing and using those interfaces.

 Communication and Concurrency (CC) View:
captures the application architecture, enclosing
classes into components. It also captures the non-
functional aspects of system functionality related to
the application behaviour, such as concurrency and
real-time constraints.

 Platform Description View: describes both
software and hardware resources of the platform.

 Architectural View: describes the platform
architecture and the architectural mapping of the
application components onto platform processing
resources. It is also the view where the DSE
parameters, rules and constraints that will enable
the exploration of the different architectural
solutions are captured.

 Verification View: is devoted to the definition of
the system stimuli environment. Stimuli modelling
is explained in detail in [17].

B. Description of the Application (PIM)

The initial steps in the methodology consist of

identifying the system functions, modelled through the

Data model and Functional View. System functions are

captured by means of the use of UML use cases and the

relations between them. The UML use cases will allow

the designer to identify the UML interfaces that model

the system functions and create the UML classes that

would implement them. System functions are modelled

by means of UML interfaces stereotyped with the

MARTE <<ClientServerSpecification>> stereotype.

The operations of the <<ClientServerSpecification>>

interfaces might have parameters whose types should

have been defined in the Data Model.

In the CC view, the application components are defined.

The CC view contains omponents with the MARTE

<<RtUnit>> and <<PpUnit>> stereotypes. The former

stereotype identifies a component which an have its own

execution thread, providing/requiring services to/from

others components by means of its provided and

required interfaces. The latter represents a non-active

component, which provides services, such as giving

access to shared data, as a reaction to active component

demands. The functional behaviour of the UML

components is defined by adding instances of functional

classes. They are captured as UML properties of the

UML component. Property type must be one of the

classes defined in the Functional View. UML

Components use UML Ports stereotyped with the

MARTE <<ClientServerPort>> and <<RtFeature>>

stereotypes for defining the interfaces which serve for

communicating with other components, and for

specifying real time behaviour. In order to complete all

the necessary information for the CC View, the user will

add an additional UML component with the COMPLEX

<<system>> stereotype. This component represents the

PIM and captures the software architecture. It includes

application component instances, captured as UML

properties typed as any of the <<RtUnit>> or

<<PpUnit>> components declared in the CC view and

UML connectors for their interconnection.

Figure 1. Arquitecture of the EFR vocoder Application.

The composite diagram of Figure 1 shows the SW

architecture of an EFR vocoder system, within a

<<system>> component of the CC view. It encloses

three component instances (“coder”, “controller” and

“decoder”). Each instance (e.g. “coder”) is an UML

property typed as a component previously defined in the

CC view (e.g. “CoderComp”). Such a component, in

turn, encloses an instance of a functional class defined

within the functional view (e.g., “Coder”).

C. Platform and Architectural Mapping (PSM)

The proposed modelling methodology supports the

description of the HW/SW platform within two views,

the Platform view and the Architectural view. SW and

HW components are declared in the Platform view. An

RTOS is declared as a component with the MARTE

<<Scheduler>> stereotype. Declaration of HW

components relies on the MARTE Hardware Resource

Modelling (HRM) subprofile (i.e. <<HwProcessor>>,

<<HwBus>>, <<HwCache>>, <<HwRAM>>,…).

The architecture of the platform is captured within the

Architectural view, specifically within a UML

component (“archi_system” in Figure 2), stereotyped

with the COMPLEX <<system>> stereotype again. This

component contains SW component instances and the

hardware platform architecture, as reflected in Figure 2.

Figure 2 also shows how a fixed architectural mapping

can be specified. Application component instances (the

three on top of Figure 2) captured the CC view are

referenced in the Architectural view (for it, first, the

<<system>> component of the Architectural view is

captured as an extension of the <<system>> component

of the CC view). Then, associations with the MARTE

<<Allocate>> stereotype, which reflects a spatial

allocation, map application components onto instances

of platform components with computation capabilities.

Figure 2. Architecture of the EFR Vocoder system.

Actas de las III Jornadas de Computación Empotrada (JCE), Elche (Alicante), 19-21 Septiembre 2012

JCE2012 - 72

IV. MODELLING FEATURES FOR DESIGN

EXPLORATION

The diagram of Figure 2 models a single implementation

since it shows a fixed architecture, a single architectural

mapping, and fixed attributes for platform components.

The COMPLEX UML/MARTE modelling methodology

provides features for enabling the specification of a

design space, that is, a set of design alternatives. This

enables the generation of a configurable executable

counterpart for obtaining performance estimates. This

way neither model modification, nor performance model

regeneration is required. This makes the methodology

suitable for DSE flows.

A. Specification for Design Space Exploration

The COMPLEX UML/MARTE modelling methodology

enables the specification of a design space which can

consist of (a) a set of architectural mappings (allocation

space); (b) a range of values for platform attributes

(attribute values space); and (c) a set of platform

architectures (architecture space). Moreover, the design

space can be shaped and constrained through the

definition of DSE constraints and rules. Finally, the

methodology also enables the definition of the output

metrics to be considered for the goal functions used in

the exploration. A dedicated UML profile, the

COMPLEX profile, has been created to add the

necessary semantics that are missing in the MARTE

profile with regard to the aforementioned features.

Therefore, this UML profile complements MARTE for

DSE. Four elements have been created to represent the

necessary concepts: Exploration parameters, of three

possible types (allocation parameters, scalar parameters

and vector parameters); DSE Rules; Constraints and

Estimation parameters (for defining output metrics).

B. Definition of the Design Space

1) Specification of a Space of Allocations

Architectural mapping is a factor with a big impact on

performance. This methodology enables the description

of a set of architectural mappings. This set is captured

through one or more UML comments placed in the

Architectural view, and stereotyped with the MARTE

<<Assign>> stereotype (to specify the allocation itself)

and with the COMPLEX <<DseAllocationParameter>>

(which provides a name to the allocation).

Figure 3. Specification of a set of architectural mappings.

Figure 3 shows an example for the EFR vocoder model

where 2 feasible allocations (controller to micro1 and

controller to micro2) are expressed in a single construct.

2) Specification of a Space of Attribute Values

Many platform attributes can have a significant impact

on system performance (cache sizes, core and bus

frequencies, etc). The proposed methodology enables

the association of a range of values to specific attributes

of platform components for exploring their impact on

performance. It is done by capturing DSE parameters,

specified as UML comments associated to the

component containing the explored attributes, and with

the application of either a <<DseScalarParameter>>

or a <<DseVectorParameter>> COMPLEX stereotype.

DSE scalar parameters specify a sequential progression

associated to a specific non-functional property. The

designer can specify either minimum, maximum and

step values to define possible values or annotate a

specific sequence of values. DSE vector parameters

enable modelling vector parameters with constraints on

the possible combinations of the elements.

Figure 4. Attribute value space for the EFR Vocoder model.

Figure 4 shows the modelling of the platform parameters

space for the EFR Vocoder model. This space is defined

by the possible values of data and instruction cache

memories (2K, 4K and 8K for ARM920T cores); by

using either a 32 or 16 bits (ARM thumb instruction set)

bus; and by the consideration of 4 core frequencies. This

space is specified through four DSE scalar parameters

related to components of the Platform view. Thus, the

size of the space of platform attribute values is 4 (core

frequencies) x 3 (data cache sizes) x 3 (instruction cache

sizes) x 2 (data bus word) = 72 design alternatives.

3) Specification of the Architecture Space

DSE parameters and <<Assign>> comments widen the

design space without changing the platform architecture.

However, the user might be interested in exploring the

impact on performance of different platform

architectures. The COMPLEX UML/MARTE modelling

methodology supports the specification of different

architectures in the same model. It is done by enabling

the specification of several architectural views, in a

similar way as several architectures can be associated to

an entity in VHDL. This way the designer can include in

the DSE loop solutions where the platform architecture

is very different and thus the alternatives cannot be

represented by means of a parameterized template.

Additionally, it is also possible to capture a cluster of

processors through a single component instance, whose

multiplicity is associated to a DSE parameter.

C. DSE Rules

The proposed modelling methodology enables

delimiting the size of the design space by means of DSE

Actas de las III Jornadas de Computación Empotrada (JCE), Elche (Alicante), 19-21 Septiembre 2012

JCE2012 - 73

rules. It is useful since the design space can

exponentially grow up to making the exploration

unaffordable. Moreover, all possible solutions might not

be feasible, e.g., all platforms modelled might not be

available. DSE rules are specified as comments with the

COMPLEX <<DseRule>> stereotype, and they can

refer to one or more DSE parameter included in the

model. DSE rules create a logical condition that in case

of not being fulfilled discards the design point from the

set of solutions to be explored.

D. Estimation Parameters

The methodology allows stating in the model which

output metrics have to feed the exploration loop. They

are called estimation parameters in the sense that, in a

DSE context, performance metrics are obtained by

means of a performance estimation technology. There

are two types of DSE estimations. DSE Application

Estimations refer to non-functional attributes

corresponding to the application components, e.g. the

minimal inter-arrival time of a sporadic service. DSE

Platform Estimations refer to the performance metrics

on the platform resources, e.g. load of CPU, power

consumption, etc. The estimation parameters are defined

in the Architectural View by means of UML comments

stereotyped with the COMPLEX

<<DseAppEstimation>> and

<<DsePlatformEstimation>> stereotypes.

Figure 5. DSE constrains and estimations.

Estimation parameters, that is, output metrics to be used

by the exploration tool, can be also referenced in the

methodology to define DSE rules and constraints. The

right hand side of Figure 5 shows how the model states

the exporting of two application performance metrics of

the EFR vocoder for their consideration in the

exploration loop: the maximum execution time of the

TXControl and of the RXControl operations (within the

“controller” module). These metrics can be used for the

definition of the objective function(s), which is tool

dependent and managed by the COMPLEX toolset.

E. DSE Constraints

DSE constraints are logic expressions referring to one or

more estimation parameters (that is, output metrics).

When the simulation of an exploration cycle finishes,

the COMPLEX toolkit reads the output performance

metrics and evaluates the logic expression to check the

validity of the design point. If the logic expression is

proved to be false the exploration tool discards such

design point from the analysis space. Therefore, DSE

constraints support from the modelling level the

reduction of the set of design alternatives in real-time

systems by relying on output metrics (in contrast to DSE

rules, which directly bound the design space). For

instance, the DSE constraint on the left hand side of

Figure 5 states that the system power consumption, a

platform performance metric has to be fed to the DSE

loop and that any design solution involving power

consumption over 2W has to be discarded.

V. EXPERIMENTAL RESULTS

In order to show the capabilities and advantages of the

proposed methodology, the EFR vocoder model

previously introduced has been developed. Such a model

states a space of design solutions, result of the cross

product of the allocation space of Figure 3 (2

alternatives) and of the space of parameters of Figure 4,

defined by the bus word width, the size of cache

memories, and the frequency of the cores. Therefore, the

number of solutions of the design space was:

NSOLUTIONS EXPLORED = 2·3·3·4·2=144 solutions.

The virtual system was generated with the COMPLEX

tooling and a full search (that is, an exhaustive search)

performed, which involved 144 SCoPE+ simulations of

1s of simulated time. The full search was totally

automatic, and required no change on the model or user

intervention. The exploration tool passed to the SCoPE

performance model a system configuration file, and

SCoPE+ returned the corresponding output metrics files.

Time (s) real usr sys usr+sys

Full search 559.5 220.1 171.6 391.7

1 simulation 4.1s 1.59 1.01 2.60

Table 1. Time for one simulation and for the full search.

The time required for the full search was measured and

reflected in the first raw of Table 1. The time required

for one simulation was measured three times and

calculated its average. This was reflected in the second

raw of Table 1. The “usr+sys” time is considered for the

comparisons. This way the error due to the debug print

outs and the load of the host system is minimized. From

the results of Table 1, the average of time spent in the

simulation of each alternative (reminding that the full

search explored 144 solutions) was 2.72s. Assuming that

the simulation of each design point does not varies much

from 2.6s (this is reasonable since each iteration runs the

simulation till the same simulated time, 1s), then the

COMPLEX framework only spends 0.12s on average

(4.4% of the simulation run) for preparing and launching

the simulation of the next design alternative.

Therefore, without having exploited yet the smart search

features of the exploration tool (since a full search was

done), the integration and automation of the DSE loop,

enabled by the proposed modelling methodology,

means a significant exploration speed up with regard to

any alternative which requires manual edition of the

model and/or regeneration of the performance model.

For instance, if the model edition, generation of the

performance model, and launch of the simulation took

only 2s on average, (what would be already a very fast

user performance) then the full search would take 662.7s

(and our proposal would yet yield 40% speed up). The

speed up will be significant if the comparison is made

against a methodology which requires as well the

regeneration of the executable performance model. If,

for instance, the user managed to edit the UML model,

regenerate the executable performance model and pass

the new arguments in 10 seconds on average, the full

Actas de las III Jornadas de Computación Empotrada (JCE), Elche (Alicante), 19-21 Septiembre 2012

JCE2012 - 74

search takes a half hour, and the speed up reaches

78.4%, that is, close 1 order of magnitude.

Figure 6 shows one of the results obtained after the

exploration: a Pareto diagram which reflects the trade-

off between the latency in the codification of voice

subframes, and the power consumption of the system.

Figure 6. Latency vs Power Consumption in the coding.

VI. CONCLUSIONS

This paper has presented the COMPLEX UML/MARTE

modelling methodology. This methodology supports, as

well as typical features of other related system-level

HW/SW co-design methodology, specific features

which make it specifically suited for DSE, a key activity

for the design of complex embedded systems. The

suitability of the proposed modelling methodology for

DSE is supported by its integration in the COMPLEX

flow and tooling, where the proposed UML/MARTE

modelling is the starting and more user interactive stage.

COMPLEX DSE methodology and tooling automates

the generation of a fast executable performance model

and the iterative exploration of the design space.

The proposed modelling methodology contributes to this

automation since it provides the necessary concepts to

define an N-dimensional design space surface and feed

the generation of the configurable performance model.

Moreover the methodology also enables the capture of

the performance metrics to be employed in the objective

functions of the DSE loop. Moreover, the model can

constrain the design space, directly by means of DSE

rules, and indirectly through constrains on the

performance metrics. Overall system performance

metrics are supported. Moreover the presented work

shows how SW non-functional properties (i.e. task

deadlines, minimum inter-arrival time) can be also taken

into account in the DSE loop. Experimental results

shows how the proposed approach enables a fully

automated, and therefore a significant speed up, of the

DSE phase.

VII. ACKNOWLEDGMENTS

This work has been funded by the European FP7-

247999 COMPLEX project and by the Spanish MCI

TEC2011-28666-C04-02 DREAMS project.

VIII. REFERENCES

[1] M. Holzer. Design Space Exploration for the Development of

Embedded Systems. Thesis Dissertation in the TU Vienna. April,

2008. Vienna. Austria.

[2] Chang, H., Cooke, L., Hunt, M., Martin, G., McNelly, A. J., and

Todd, L. 1999 Surviving the SOC Revolution: a Guide to

Platform-Based Design. Kluwer Academic Publishers.

[3] Unified Modelling Language™,(

http://www.omg.org/spec/UML/)

[4] OMG. “UML Profile for MARTE: Modelling and Analysis of

Real-Time Embedded Systems”. Version 1.1. Available in

http://www.omgmarte.org/ . June, 2011.

[5] COMPLEX project website. http://complex.offis.de. 2012.

[6] SCoPE website. www.teisa.unican.es/scope. Dec., 2011.

[7] Multicube Explorer.

http://home.dei.polimi.it/zaccaria/multicube_explorer_v1/Home.

html

[8] E. Piel, R.B.Atitallah, P.Marquet, S.Meftali, S. Niar, A. Etien,

J.L.Dekeyser, P. Boulet. “Gaspard2: from MARTE to SystemC

Simulation”. In Design, Automation and Test in Europe (DATE

08), Munich, Germany, March 2008.

[9] J.L.Dekeyser, A. Gamatié, A. Etien, R.B.Atitallah, P. Boulet.

"Using the UML Profile for MARTE to MPSoC Co-Design". In

First International Conference on Embedded Systems & Critical

Applications (ICESCA'08), Tunis, Tunisia, May 2008.

[10] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, J.P. Diguet. “A

Code-Design Approach for Embedded System Modelling and

Code Generation with UML and MARTE”. In Proceedings of

DATE’09. Dresden. March, 2009.

[11] A. W. Liehr, H. S. Rolfs, K. J. Buchenrieder, and U.

Nageldinger. “Generating MARTE Allocation Models from

Activity Threads” in “Languages for Embedded Systems and

their Applications”. Lecture Notes in Electrical Engineering,

2009, Volume 36, Part I, 43-56.

[12] T. Robert, V. Perrier. “COFLUENT Methodology for UML:

UML SysML MARTE Flow for CoFluent Studio”. White paper.

Available at

http://www.cofluentdesign.com/index.php/solutions/uml-sysml-

marte. February, 2012.

[13] M.Mura, L.G.Murillo, M.Prevostini. “Model-based Design

Space Exploration for RTES with SysML and MARTE”. In

proceedings of FDL’2008. Stuttgart, Germany. 2008.

[14] C. Szyperski, Component Software: Beyond Object-Oriented

Programming. 2nd ed. Addison-Wesley Professional, 2002.

[15] D. C. Schmidt, “Model-driven Engineering” IEEE Computer,

vol. 39 no. 2, pp. 25-31, 2006.

[16] K. Yamashita. (2010). “Possibility of ESL: A software centric

system design for multicore SoC in the upstream phase”, Design

Automation Conference (ASP-DAC), Proc. of the 15th Asia and

South Pacific. pp. 805 - 808.

[17] F. Herrera, P. Peñil, H. Posadas and E. Villar. “A Model-Driven

Methodology for the Development of SystemC Executable

Environments”. In Proc. of FDL’2012. Vienna. Sept, 2012.

[18] Panunzio, M., Vardanega, Tullio. (2009). “On Component-Based

Development and High-Integrity Real-Time Systems”, Proc. of

the 15th IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications.

[19] Panunzio, M., Vardanega, Tullio. (2010). “A Component Model

for On-board Software Applications”, Proc. of the 36th

Euromicro Conf. on Software Engineering and Advanced

Applications (SEAA).

Actas de las III Jornadas de Computación Empotrada (JCE), Elche (Alicante), 19-21 Septiembre 2012

JCE2012 - 75

	Preámbulo
	Editores
	Información de Publicación
	Comités
	Entidades
	Presentación

	Índice de las Actas JCE2012
	Aplicaciones de los Sistemas Empotrados
	A Control Architecture for a Micro Aerial Vehicle Intended for Vessel Visual Inspection
	Sistema de consulta flexible utilizando dispositivos móviles. Aplicación a la búsqueda de restaurantes
	Vehículo Submarino Autónomo para trabajos oceanográficos en aguas costeras
	Servidor de Aplicaciones MHP para TDT
	Vehículo solar autónomo de arquitectura electrónica abierta para el desarrollo de algoritmos de gestión de energía
	Diseño y Construcción de un Guante de Datos mediante Sensores de Flexibilidad y Acelerómetro
	Sistema de información autónomo y de bajo coste para conocer el estado de las carreteras en tiempo real
	Separación ciega de señales adaptativa para procesamiento en tiempo real con DSP

	Diseño y Desarrollo de Sistemas Empotrados
	Safety-Critical Platform Model Based on Certification Standards
	Plataforma Heterogénea Hw/Sw para Sistemas Multimedia Empotrados basada en OpenMAX
	Data Fusion Mechanism based on a Service Composition Model for the Internet of Things
	An Embedded System Modelling Methodology for Design Space Exploration
	Implicaciones del uso de la reconfiguración parcial dinámica de las FPGAs en la implementación de Radios Definidas por Software
	Tcl interpreter implementation for embedded systems based on LEON architectures
	A flexible model driven software development process for component based embedded control systems

	Redes de Sensores
	Posicionando Routers en Redes de Sensores Inalámbricos Mediante Algoritmos Evolutivos para el Incremento de la Eficiencia Energética
	Sincronización de Tiempos en Redes Inalámbricas de Sensores con Ajuste Avanzado por Temperatura
	DARP - Protocolo de radio adaptativo y dinámico
	Experiencias con redes de sensores inalámbricos en la Escuela Politécnica de la Universidad de Extremadura
	Sistema de monitorización a través de 6LoWPAN para la recolección de variables aplicadas a la agricultura de precisión
	Sistema de riego de plantas de interior basado en Redes Inalámbricas de Sensores y dispositivos móviles inteligentes

	Índice de autores

