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The design of embedded systems is being challenged by 

their growing complexity and tight performance 

requirements. A synthetic, but sufficiently detailed model 

of the system and its environment, fast performance 

assessment technologies, and smart exploration of design 

alternatives are required for a fast assessment of the 

optimum design alternative. This paper focuses on the 

former aspect, by presenting the COMPLEX 

UML/MARTE modelling methodology, which introduces 

novel and necessary aspects for speeding up architectural 

exploration. This modelling methodology has been 

integrated into the COMPLEX Design Exploration 

framework, which has served to show through a 

demonstrative example (an EFR vocoder) the applicability 

and benefits of the proposed modelling approach. 

Keywords 

UML, MARTE, modelling, Design Space Exploration, 

ESL, System Level Design. 

I. INTRODUCTION 

The design of embedded systems is in a highly 

competitive context. The translation of a successful 

design into a successful product highly depends on 

becoming the first product in the market with new 

complex functionalities fulfilling tight performance 

constraints. In this scenario, the task of system engineers 

becomes challenging. They require an early assessment 

of the design alternatives, since about 90% of the overall 

costs are determined at the first stages of the design [1]. 

At the same time, a right assessment becomes difficult 

due to the complexity of applications and platforms, 

whose performance is characterized by a diverse set of 

factors, such as the software architecture of the 

application; the architecture of the HW platform; how 

the application functionalities are executed by the 

processing resources of the platform; cache sizes; 

memory sizes; and many others. Design Space 

Exploration (DSE) is a key design activity [2] in charge 

of enabling such an early assessment. A DSE framework 

has three main requirements: (1) a modelling 

methodology suitable for Design Space Exploration 

(DSE), (2) tools able to produce fast and sufficiently 

accurate performance metrics, and finally (3) an 

exploration engine able to perform a smart search of the 

overall design space. This paper focuses and contributes 

to the first point. 

A set of methodologies have enabled the capture of the 

system architecture and main system parameters. A 

special effort has been done to develop methodologies 

based on the Unified Modelling Language (UML) [3], 

supported by specialized profiles, such as SysML and 

MARTE [4]. The MARTE profile is an OMG standard 

that offers a rich set of extensions specifically suited for 

the specification of embedded real-time systems. 

MARTE enables building models containing detailed 

information about the platform attributes and the system 

architecture for enabling performance analysis. 

However, the proposed system specification 

methodologies are still limited for DSE purposes. In 

these methodologies, the exploration of different 

platform architectures, of different architectural 

mappings, and even a small change in a design 

parameter (e.g., a cache size) requires a manual change 

of the model. Moreover, when the model is used for 

producing an executable virtual system for a simulation-

based performance analysis, a regeneration of the 

executable model is typically required. Model edition 

and regeneration of the executable performance model 

add to the simulation time at each iteration of the DSE 

loop, and they have a non-negligible impact in the 

exploration time, up to a point which can make the 

exploration of a sufficiently wide design space 

unaffordable. Current modelling methodologies also 

lack ways for capturing within the model the output 

performance metrics to be used by the objective 

function(s) of the DSE process. Enabling their capture in 

the model in a tool independent manner would enable 

the direct relation of such metrics with the performance 

constraints also captured in the model. Performance 

constraints are mandatory, thus they impose a frontier 

for the solutions to be considered as feasible solutions. 

This paper presents a component based modelling 

methodology based on UML/MARTE and explicitly 

designed for supporting DSE. The methodology has 

been developed as the entry point of the COMPLEX 

framework [5], especially suited for DSE. Specifically, 

the methodology supports the specification of a design 

space, i.e., a set of design solutions, rather than a single 

design solution. Moreover, the methodology supports 

also explicit constraints and rules that limit the space of 

solutions to those that can be of interest. The 

methodology also supports the specification of a set of 

output performance metrics, which are required as 

inputs to the objective functions and/or to define 

associated constraints on them. The methodology is 

supported by a specific toolset developed in the 

COMPLEX project. This toolset enables the automatic 

generation, directly from the COMPLEX UML/MARTE 

model, of an executable and configurable performance 

model. This performance model is based on the SCoPE 

technology [6], which through a fast simulation, enables 

functional validation and provides a rich set of 

performance metrics. The SCoPE performance model is 

configurable and represents the design space captured at 

the model. In each DSE iteration, before launching the 
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simulation, the executable model is configured, by 

giving specific values to design parameters (e.g. a given 

cache size), and defining a specific platform architecture 

and architectural mapping. Each new configuration, 

which represents a new design point to be explored, 

requires neither an edition of the UML/MARTE model 

nor a regeneration of the executable performance model. 

The simulation of the performance model for each 

design point provides performance metrics to a DSE 

exploration tool (developed by COMPLEX partners as 

an evolution of the Multicube Explorer [7] tool) which 

decides the next design point to be explored. The 

explanation of the whole COMPLEX toolset is out of 

the scope of this paper. In this paper, we focus on the 

modelling methodology.  

The structure of the paper is as follows. Section II will 

present the related work. Then section III introduces the 

proposed methodology, presenting its main concepts and 

showing how a system model is built. Section IV 

explains the features of the methodology for specific 

support of DSE, which constitutes the main contribution. 

Section V shows the benefits of the modelling approach 

through experimental results.  Section VI gives the main 

conclusions of this work. 

II. RELATED WORK 

Despite the relative recent development of the MARTE 

profile, several works have proposed UML/MARTE 

based methodologies. Gaspard2 [8][9] is a design 

environment for data-intensive applications which 

enables a MARTE description of both, the application 

and the hardware platform, including MPSoC and 

regular structures. Gaspard2 uses composite diagrams 

and the MARTE profile for capturing both, application 

and platform architectures. Gaspard2 tooling supports 

the chaining of different model to model (M2M) 

transformation tools. This facilitates the generation of 

synthesis flows, and also of performance models. 

Specifically, Gaspard2 supports the generation of 

SystemC TLM models at the Programmers View Time 

(PVT) level. It enables fast simulations, which speeds up 

exploration. However, a change in a parameter or in the 

architecture requires the edition of the model and 

moreover, the re-generation of the TLM model.
 

MoPCoM [10] is another design methodology for the 

design of real-time embedded systems which supports 

UML and the MARTE profile for system modelling. 

Specifically, MoPCoM uses the NFP MARTE profile 

for the description of real-time properties; the HRM 

MARTE profile for platform description; and the Alloc 

MARTE profile for architectural mapping. Moreover, 

MoPCoM defines three levels of generation. From all of 

them, the second level, called Execution Modelling 

Level (EML), targets the generation of models for 

performance analysis, and it is suitable for obtaining 

performance figures used in DSE iterations. However, 

work reported in [10] mostly focuses on the Detailed 

Modelling Level DML level, intended for 

implementation, by enabling VHDL code generation. 

Like in Gaspard2, exploration of architectural 

alternatives requires the edition of the UML/MARTE 

model and a re-generation of the executable 

performance model. 

The work of [11] proposed a UML/MARTE based 

methodology in order to reduce the effort to capture the 

set of architectural alternatives for design space 

exploration. For it, instead of relying on an element 

explicitly representing the allocation (e.g. an UML 

association with the MARTE <<allocate>> stereotype), 

[11]  introduces activity threads. An activity thread (AT) 

is a UML activity diagram where each path reflects a 

design alternative, that is, an architectural mapping.  

Co-Fluent methodology [12] provides a modelling 

methodology relying on SysML and on MARTE which 

uses the <<assign>> stereotype for expressing 

allocations. However, they are used for modelling a 

single allocation, thus a single implementation 

alternative. The methodology captures application and 

hardware architecture by means of composite diagrams 

and SysML blocks. UML activity diagrams are used to 

specify application execution flows. The MARTE HRM 

profile is used for capturing the HW platform. 

In [13], a methodology for supporting designers on the 

evaluation of the HW/SW partitioning solutions, 

specifically, to identify design points fulfilling the 

timing constraints is shown. It proposes a way to depict 

in one set of diagrams all possible combinations of 

system configurations. By means of annotation of 

MARTE non-functional properties and of the 

application of schedulability analysis, the design space 

is restricted to the design points fulfilling timing 

requirements. However this methodology neither reports 

optimum solutions, nor it relies on automated 

technologies for the estimation of performance metrics. 

III. MODELLING METHODOLOGY 

A. Introduction 

 The system modelling methodology described in this 

paper is follows a component-oriented approach [14] 

and applies the Model Driven Architecture (MDA) [15] 

principles in the development of HW/SW embedded 

systems. Moreover, the proposed approach makes this 

methodology software centric [16] as it enables the 

description of a platform independent model (PIM)  

which can be fully allocated to a SW implementation, 

and thus can be considered as an application model. 

However, the methodology also enables to consider the 

HW implementation of application components.  

In Component-based Software Engineering (CBSE) 

[14], the system is built as a composition of application 

components interacting with each other only through 

well-defined interfaces. Components are software units 

that exhibit their interfaces (provided or required). This 

way, the application can be split into clearly separable 

and reusable blocks, improving the organization of the 

product as well as its reusability and modularity.  

The COMPLEX methodology supports the separation of 

concerns. This separation is achieved by providing 

distinct system views to the designer, in the shape of 

UML packages, each one for every relevant aspect: 
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 Data View:  captures the relevant data types of the 
system, i.e., types of data exchanged at interfaces. 

 Functional View: captures the functional structure 
of the system, as a set of interfaces and a set of 
classes implementing and using those interfaces. 

 Communication and Concurrency (CC) View: 
captures the application architecture, enclosing 
classes into components. It also captures the non-
functional aspects of system functionality related to 
the application behaviour, such as concurrency and 
real-time constraints. 

 Platform Description View: describes both 
software and hardware resources of the platform. 

 Architectural View:  describes the platform 
architecture and the architectural mapping of the 
application components onto platform processing 
resources. It is also the view where the DSE 
parameters, rules and constraints that will enable 
the exploration of the different architectural 
solutions are captured. 

 Verification View: is devoted to the definition of 
the system stimuli environment. Stimuli modelling 
is explained in detail in [17]. 

B. Description of the Application (PIM) 

The initial steps in the methodology consist of 

identifying the system functions, modelled through the 

Data model and Functional View.  System functions are 

captured by means of the use of UML use cases and the 

relations between them. The UML use cases will allow 

the designer to identify the UML interfaces that model 

the system functions and create the UML classes that 

would implement them. System functions are modelled 

by means of UML interfaces stereotyped with the 

MARTE <<ClientServerSpecification>> stereotype. 

The operations of the <<ClientServerSpecification>> 

interfaces might have parameters whose types should 

have been defined in the Data Model.  

In the CC view, the application components are defined. 

The CC view contains omponents with the MARTE 

<<RtUnit>> and <<PpUnit>> stereotypes. The former 

stereotype identifies a component which an have its own 

execution thread, providing/requiring services to/from 

others components by means of its provided and 

required interfaces. The latter represents a non-active 

component, which provides services, such as giving 

access to shared data, as a reaction to active component 

demands. The functional behaviour of the UML 

components is defined by adding instances of functional 

classes. They are captured as UML properties of the 

UML component. Property type  must be one of the 

classes defined in the Functional View.  UML 

Components use UML Ports stereotyped with the 

MARTE <<ClientServerPort>> and <<RtFeature>> 

stereotypes for defining the interfaces which serve for 

communicating with other components, and for 

specifying real time behaviour.  In order to complete all 

the necessary information for the CC View, the user will 

add an additional UML component with the COMPLEX 

<<system>> stereotype. This component represents the 

PIM and captures the software architecture. It includes 

application component instances, captured as UML 

properties typed as any of the <<RtUnit>> or 

<<PpUnit>> components declared in the CC view and 

UML connectors for their interconnection.  

 

Figure 1. Arquitecture of the EFR vocoder Application. 

The composite diagram of Figure 1 shows the SW 

architecture of an EFR vocoder system, within a 

<<system>> component of the CC view. It encloses 

three component instances (“coder”, “controller” and 

“decoder”). Each instance (e.g. “coder”) is an UML 

property typed as a component previously defined in the 

CC view (e.g. “CoderComp”). Such a component, in 

turn, encloses an instance of a functional class defined 

within the functional view (e.g., “Coder”). 

C. Platform and Architectural Mapping (PSM) 

The proposed modelling methodology supports the 

description of the HW/SW platform within two views, 

the Platform view and the Architectural view. SW and 

HW components are declared in the Platform view. An 

RTOS is declared as a component with the MARTE 

<<Scheduler>> stereotype. Declaration of HW 

components relies on the MARTE Hardware Resource 

Modelling (HRM) subprofile (i.e. <<HwProcessor>>, 

<<HwBus>>, <<HwCache>>, <<HwRAM>>,…).  

The architecture of the platform is captured within the 

Architectural view, specifically within a UML 

component (“archi_system” in Figure 2), stereotyped 

with the COMPLEX <<system>> stereotype again. This 

component contains SW component instances and the 

hardware platform architecture, as reflected in Figure 2. 

Figure 2 also shows how a fixed architectural mapping 

can be specified. Application component instances (the 

three on top of Figure 2) captured the CC view are 

referenced in the Architectural view (for it, first, the 

<<system>> component of the Architectural view is 

captured  as an extension of the <<system>> component 

of the CC view). Then, associations with the MARTE 

<<Allocate>> stereotype, which reflects a spatial 

allocation, map application components onto instances 

of platform components with computation capabilities. 

 

Figure 2. Architecture of the EFR Vocoder system. 
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IV. MODELLING FEATURES FOR DESIGN 

EXPLORATION 

The diagram of Figure 2 models a single implementation 

since it shows a fixed architecture, a single architectural 

mapping, and fixed attributes for platform components. 

The COMPLEX UML/MARTE modelling methodology 

provides features for enabling the specification of a 

design space, that is, a set of design alternatives. This 

enables the generation of a configurable executable 

counterpart for obtaining performance estimates. This 

way neither model modification, nor performance model 

regeneration is required. This makes the methodology 

suitable for DSE flows. 

A. Specification for Design Space Exploration 

The COMPLEX UML/MARTE modelling methodology 

enables the specification of a design space which can 

consist of (a) a set of architectural mappings (allocation 

space); (b) a range of values for platform attributes 

(attribute values space); and (c) a set of platform 

architectures (architecture space).  Moreover, the design 

space can be shaped and constrained through the 

definition of DSE constraints and rules. Finally, the 

methodology also enables the definition of the output 

metrics to be considered for the goal functions used in 

the exploration. A dedicated UML profile, the 

COMPLEX profile, has been created to add the 

necessary semantics that are missing in the MARTE 

profile with regard to the aforementioned features. 

Therefore, this UML profile complements MARTE for 

DSE. Four elements have been created to represent the 

necessary concepts: Exploration parameters, of three 

possible types (allocation parameters, scalar parameters 

and vector parameters); DSE Rules; Constraints and 

Estimation parameters (for defining output metrics). 

B. Definition of the Design Space 

1) Specification of a Space of Allocations 

Architectural mapping is a factor with a big impact on 

performance. This methodology enables the description 

of a set of architectural mappings. This set is captured 

through one or more UML comments placed in the 

Architectural view, and stereotyped with the MARTE 

<<Assign>> stereotype (to specify the allocation itself) 

and with the COMPLEX <<DseAllocationParameter>> 

(which provides a name to the allocation).  

 

Figure 3. Specification of a set of architectural mappings. 

Figure 3 shows an example for the EFR vocoder model 

where 2 feasible allocations (controller to micro1 and 

controller to micro2) are expressed in a single construct.  

2) Specification of a Space of Attribute Values 

Many platform attributes can have a significant impact 

on system performance (cache sizes, core and bus 

frequencies, etc). The proposed methodology enables 

the association of a range of values to specific attributes 

of platform components for exploring their impact on 

performance. It is done by capturing DSE parameters, 

specified as UML comments associated to the 

component containing the explored attributes, and with 

the application of either  a <<DseScalarParameter>> 

or a <<DseVectorParameter>> COMPLEX stereotype. 

DSE scalar parameters specify a sequential progression 

associated to a specific non-functional property. The 

designer can specify either minimum, maximum and 

step values to define possible values or annotate a 

specific sequence of values. DSE vector parameters 

enable modelling vector parameters with constraints on 

the possible combinations of the elements. 

 

Figure 4. Attribute value space for the EFR Vocoder model. 

Figure 4 shows the modelling of the platform parameters 

space for the EFR Vocoder model. This space is defined 

by the possible values of data and instruction cache 

memories (2K, 4K and 8K for ARM920T cores); by 

using either a 32 or 16 bits (ARM thumb instruction set) 

bus; and by the consideration of 4 core frequencies. This 

space is specified through four DSE scalar parameters 

related to components of the Platform view.  Thus, the 

size of the space of platform attribute values is 4 (core 

frequencies) x 3 (data cache sizes) x 3 (instruction cache 

sizes) x 2 (data bus word) = 72 design alternatives. 

3) Specification of the Architecture Space 

DSE parameters and <<Assign>> comments widen the 

design space without changing the platform architecture. 

However, the user might be interested in exploring the 

impact on performance of different platform 

architectures. The COMPLEX UML/MARTE modelling 

methodology supports the specification of different 

architectures in the same model. It is done by enabling 

the specification of several architectural views, in a 

similar way as several architectures can be associated to 

an entity in VHDL. This way the designer can include in 

the DSE loop solutions where the platform architecture 

is very different and thus the alternatives cannot be 

represented by means of a parameterized template. 

Additionally, it is also possible to capture a cluster of 

processors through a single component instance, whose 

multiplicity is associated to a DSE parameter. 

C. DSE Rules 

The proposed modelling methodology enables 

delimiting the size of the design space by means of DSE 
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rules. It is useful since the design space can 

exponentially grow up to making the exploration 

unaffordable. Moreover, all possible solutions might not 

be feasible, e.g., all platforms modelled might not be 

available. DSE rules are specified as comments with the 

COMPLEX <<DseRule>> stereotype, and they can 

refer to one or more DSE parameter included in the 

model. DSE rules create a logical condition that in case 

of not being fulfilled discards the design point from the 

set of solutions to be explored. 

D. Estimation Parameters 

The methodology allows stating in the model which 

output metrics have to feed the exploration loop. They 

are called estimation parameters in the sense that, in a 

DSE context, performance metrics are obtained by 

means of a performance estimation technology. There 

are two types of DSE estimations. DSE Application 

Estimations refer to non-functional attributes 

corresponding to the application components, e.g. the 

minimal inter-arrival time of a sporadic service. DSE 

Platform Estimations refer to the performance metrics 

on the platform resources, e.g. load of CPU, power 

consumption, etc. The estimation parameters are defined 

in the Architectural View by means of UML comments 

stereotyped with the COMPLEX 

<<DseAppEstimation>> and 

<<DsePlatformEstimation>> stereotypes.  

 

Figure 5. DSE constrains and estimations. 

Estimation parameters, that is, output metrics to be used 

by the exploration tool, can be also referenced in the 

methodology to define DSE rules and constraints. The 

right hand side of Figure 5 shows how the model states 

the exporting of two application performance metrics of 

the EFR vocoder for their consideration in the 

exploration loop: the maximum execution time of the 

TXControl and of the RXControl operations (within the 

“controller” module). These metrics can be used for the 

definition of the objective function(s), which is tool 

dependent and managed by the COMPLEX toolset. 

E. DSE Constraints 

DSE constraints are logic expressions referring to one or 

more estimation parameters (that is, output metrics). 

When the simulation of an exploration cycle finishes, 

the COMPLEX toolkit reads the output performance 

metrics and evaluates the logic expression to check the 

validity of the design point. If the logic expression is 

proved to be false the exploration tool discards such 

design point from the analysis space.  Therefore, DSE 

constraints support from the modelling level the 

reduction of the set of design alternatives in real-time 

systems by relying on output metrics (in contrast to DSE 

rules, which directly bound the design space). For 

instance, the DSE constraint on the left hand side of 

Figure 5 states that the system power consumption, a 

platform performance metric has to be fed to the DSE 

loop and that any design solution involving power 

consumption over 2W has to be discarded. 

V. EXPERIMENTAL RESULTS 

In order to show the capabilities and advantages of the 

proposed methodology, the EFR vocoder model 

previously introduced has been developed. Such a model 

states a space of design solutions, result of the cross 

product of the allocation space of Figure 3 (2 

alternatives) and of the space of parameters of Figure 4, 

defined by the bus word width, the size of cache 

memories, and the frequency of the cores. Therefore, the 

number of solutions of the design space was: 

NSOLUTIONS EXPLORED = 2·3·3·4·2=144 solutions. 

The virtual system was generated with the COMPLEX 

tooling and a full search (that is, an exhaustive search) 

performed, which involved 144 SCoPE+ simulations of 

1s of simulated time. The full search was totally 

automatic, and required no change on the model or user 

intervention. The exploration tool passed to the SCoPE 

performance model a system configuration file, and 

SCoPE+ returned the corresponding output metrics files. 

Time (s) real usr sys usr+sys 

Full search 559.5 220.1 171.6 391.7 

1 simulation 4.1s 1.59 1.01 2.60 

Table 1. Time for one simulation and for the full search. 

The time required for the full search was measured and 

reflected in the first raw of Table 1. The time required 

for one simulation was measured three times and 

calculated its average. This was reflected in the second 

raw of Table 1. The “usr+sys” time is considered for the 

comparisons. This way the error due to the debug print 

outs and the load of the host system is minimized. From 

the results of Table 1, the average of time spent in the 

simulation of each alternative (reminding that the full 

search explored 144 solutions) was 2.72s. Assuming that  

the simulation of each design point does not varies much 

from 2.6s (this is reasonable since each iteration runs the 

simulation till the same simulated time, 1s), then the 

COMPLEX framework only spends 0.12s on average 

(4.4% of the simulation run) for preparing and launching 

the simulation of the next design alternative.  

Therefore, without having exploited yet the smart search 

features of the exploration tool (since a full search was 

done), the integration and automation of the DSE loop, 

enabled by the proposed modelling methodology,  

means a significant exploration speed up with regard to 

any alternative which requires manual edition of the 

model and/or regeneration of the performance model. 

For instance, if the model edition, generation of the 

performance model, and launch of the simulation took 

only 2s on average, (what would be already a very fast 

user performance) then the full search would take 662.7s 

(and our proposal would yet yield 40% speed up). The 

speed up will be significant if the comparison is made 

against a methodology which requires as well the 

regeneration of the executable performance model. If, 

for instance, the user managed to edit the UML model, 

regenerate the executable performance model and pass 

the new arguments in 10 seconds on average, the full 
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search takes a half hour, and the speed up reaches 

78.4%, that is, close 1 order of magnitude. 

Figure 6 shows one of the results obtained after the 

exploration: a Pareto diagram which reflects the trade-

off between the latency in the codification of voice 

subframes, and the power consumption of the system. 

 

Figure 6. Latency vs Power Consumption in the coding. 

VI. CONCLUSIONS 

This paper has presented the COMPLEX UML/MARTE 

modelling methodology. This methodology supports, as 

well as typical features of other related system-level 

HW/SW co-design methodology, specific features 

which make it specifically suited for DSE, a key activity 

for the design of complex embedded systems. The 

suitability of the proposed modelling methodology for 

DSE is supported by its integration in the COMPLEX 

flow and tooling, where the proposed UML/MARTE 

modelling is the starting and more user interactive stage. 

COMPLEX DSE methodology and tooling automates 

the generation of a fast executable performance model 

and the iterative exploration of the design space. 

The proposed modelling methodology contributes to this 

automation since it provides the necessary concepts to 

define an N-dimensional design space surface and feed 

the generation of the configurable performance model. 

Moreover the methodology also enables the capture of 

the performance metrics to be employed in the objective 

functions of the DSE loop. Moreover, the model can 

constrain the design space, directly by means of DSE 

rules, and indirectly through constrains on the 

performance metrics. Overall system performance 

metrics are supported. Moreover the presented work 

shows how SW non-functional properties (i.e. task 

deadlines, minimum inter-arrival time) can be also taken 

into account in the DSE loop. Experimental results 

shows how the proposed approach enables a fully 

automated, and therefore a significant speed up, of the 

DSE phase. 
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