UML/MARTE methodology for high-level system
estimation and optimal synthesis

Héctor Posadas, Pablo Pefiil, Alejandro NicolaseBimVillart

Microelectronics Engineering Group, UniversidadG#mtabria,
39005-Santander, SPAIN
{posadash, pabl op, nicolasa, villar}@eisa.unican.es

Abstract. Design of embedded systems is facing the challefgfeeir growing
complexity and strict performance requirements. BMaitiven design solutions
are very common in this context, where the UML/MARPEfile is a well-
known solution for real-time, embedded system miadelDuring the design
process, several specification alternatives cardresidered; specifically, the
HW/SW platform, concurrent application structurpplication allocation into
HW/SW platform resources, etc. The exploration tafse design alternatives
enables a set of performance estimations to bengotan order to choose the
optimal specification, facilitating system implen@ion and minimizing de-
signer effort. The paper proposes an UML/MARTE rodtilogy the enables
automatic estimation of the system to be implentr@nce the optimal system
specification has been defined, the proposed UMLRWE methodology en-
ables the final system to be implemented throughwtomatic synthesis proc-
ess.

1 Introduction

The growing SW complexity of current embedded systbas led designers to in-
crease the abstraction level of the first stageshefdesign process. Designing at
higher levels of abstraction provides an effectivay to deal with the complexity of
large systems. The effects of creating differergcexion flows and deciding on dif-
ferent HW resource allocations have to be evaluetety in the design process. Thus,
system-modeling methodologies and implementatiowdlhave to be flexible enough
to enable optimizing performance by evaluating mplgtdesign decisions with mini-
mal designer effort.

In this context, model-driven design methodolodiased on UML are commonly
adopted to handle the early design of embedde@ragsil,2]. The models enable
easy and fast description of the entire systemchvis then used as input for the steps
of code generation and integration [3]. HoweverepuML usually lacks the seman-
tics required to adequately model all the charéttes of embedded systems. As a
consequence, these models are commonly develogkdvifgy different profiles

! This work has been founded by the PHARAON FP7-288307 and the Spanish
TEC2011-28666-C04-02 MCI projects.

which add additional semantics to the original ba$ML components. Among these
profiles, MARTE is gaining increasing interest tbe development of real-time, em-
bedded systems.

Taking MARTE-based models as input, several symhagproaches have been
proposed. Gaspard2 [4] is a design environmentdta-intensive applications which
enables MARTE description of the application angl lardware platform, generating
an executable TLM SystemC platform at the timedymomers view (PVT) level. In
[5] a design flow based on high-level languagessk8y, MARTE, SystemC, etc)
enables the generation of the deterministic mhittaded code for parallel implemen-
tations. In [6], a component-based modeling metlaiobased on UML/MARTE
and explicitly designed for supporting DSE is presd. In 0[7] a semi-automatic
solution for generation of HW/SW infrastructurerfr&JML models is presented.

However, all these solutions are oriented to gemgyaompletely fixed models,
especially in their concurrent structure, whichitgrtheir applicability when the sys-
tem must fulfill different constraints. In that dert, design space exploration of con-
currency and allocation must be considered in otléind the solutions accomplish-
ing all the requirements. In this way, the Zeligsofrastructure [3] supports the gen-
eration of codes for different resource allocatjdmst without providing simulation
services that enable system constraints to be demesl early in the design process.
Other solutions [8,9] enable different system-lesieiulations, but with limited explo-
ration capabilities. However they do not provideowgh capability to explore the
optimal system’s concurrent architecture

To solve this problem, this paper presents a metlogg to help designers to ex-
plore and automatically implement different desgystem concurrency architecture
alternatives in the POSIX domain. The approach lesabe optimization of the con-
current structure in the UML/MARTE model by easihpdifying the communication
semantics and interfaces used as communicationanischs. Using this infrastruc-
ture, the models are automatically implemented eggting all the files required to
simulate the architectures in a fast native co-Ktian tool. Then, the designer can
easily modify the model based on the performancaduetions resulting from the

[Seved [] (e
= e () =)
[o) (el
[« e] =]
1 [)]

Sequential Concurrent 1 Concurrent 2 Concurrent 3 Concurrent 4 Concurrent 5

Fig. 1. Original sequential architecture of the MPEG4 aaion used as an ex-
ample and later concurrent architectures evaluatedifying the communication
semantics.

These model modifications basically focus on corentrSW architecture and re-
source allocation. It is possible to modify the commication mechanisms among
application components to force them to be seqalemidncurrent, to create multiples
copies of a component, etc. (Figure 1). Then, tmarounications are automatically
implemented and the result evaluated using thehegid tool developed. Thus, at the
end of the exploration process, optimized syntleesizodes are automatically gener-
ated for direct integration in the physical platfor

2 UML/MARTE design flow

The exploration process that can be performed byptloposed infrastructure is
based on a five-step flow (Figure 2). First, thetesn is modeled following the pro-
posed UML/MARTE modeling methodology, providing tk#C++ files containing
the components functionality. Then, the model iw@amatically transformed into an
executable code and, the fast, native simulatioh$@€oPE [10] is called, in order to
obtain performed metrics characterizing the UML mlodNext, the performance met-
rics are analyzed by the user, obtaining conclgsaiout which changes in the model
channels can optimize the system.

B Model B
transformation /
MARTE S
e SlmL{Iatlon
" Physical
Synthesis }— platform

Fig 2. Proposed UML/MARTE-based optimization flow

When the system obtained fulfills the requiremeatsynthesis tool is called. The
synthesis tool analyzes the information of the UMbdel and generates all the ele-
ments required to create the executable SW to hgpedhto the physical platform,
including communication wrappers, main files, etc.

To support this flow, the UML/MARTE methodology fased enables these
changes to be performed by focusing on the deepelngdof communication chan-
nels as a way of enabling the modification and evgtion of the application’s concur-
rent architecture. This exploration will enable @ptimal use of the HW platform
resources, taking advantage of potential parattelis

21 UML/MARTE Meta-modeling

The UML/MARTE system modeling methodology definedetnable the explora-
tion and synthesis flow is a component-oriented, dokowing the Model Driven
Architecture (MDA) principles in the development HiV/SW embedded systems.
The application is divided into functional compotsethat are connected through
communication media, and mapped to the processéngeats of the HW platform.

The SW components provide and require functionsdha grouped in interfaces,
using the MARTE modeling facilities. Additionallpew communication semantics
have been added as a way to connect the providkdegnired interfaces of the func-
tional components, considering different behavidilsese semantics are captured in
channel models, providing a powerful, flexible agasy-to-use way to define and
explore the system’s concurrent architecture. Sipeaiformation about the new
channel semantics can be found in [11].

At the same time, the modeling methodology is basethe idea of the separation
of concerns. This separation is achieved by pragidiistinct system views to the
designer; each one for a relevant aspect: datalpmmiecurrency structure, communi-
cation mechanism, HW platform, SW functionality;.et

3 Generation process

Once the model is properly created, the genergtionesses required to perform
the exploration flow and the final synthesis caartsfTo do so, all the different codes
required to perform the simulation and the finaltegsis must be generated from the
information in the UML model, as described in figuB. Since the native co-
simulation tool used in the flow (SCoPE) and thgéadomain supported (Linux) are
both based on the POSIX API, the generated C fitesl to integrate all the compo-
nents are valid for both steps of the flow, sinytif the process.

Inputs

umL/
MARTE

model
Eclipse
infrastructure

Code Compilation Executable SCoPE simulator,
. for simulation/ i .
S m Generation physical platf, file Physical platform

Fig. 3. Flow implemented to generate the files requiredsfimulation and final
implementation in the physical platform.

First, some generators developed in Acceleo amgjiated in Eclipse analyze the
UML/MARTE model, translating all the informationtomXML files and generating
the Makefiles required during the compilation prExel hese files are:

» DataModelFile.xml, containing the specificationdata types used in the model.

* ApplicationFunctionalityAndApplicationStructuremt, describing external ports
and internal characteristics of the componentd) ascheir associated C/C++ files or
the number of internal threads.

» Communication.xml, describing the communicatiogchmnisms that intercon-
nect the system components and their associateghsieroharacteristics.

« InterfaceFile.xml, describing the interfaces ubgdhe application components.

» MemoryAllocation.xml, specifying the applicatic@omponent mapping to mem-
ory partitions

* HWPIlatform.xml and SWPIatform, describing the H&Mmponents (processor,
memories, buses, etc.) and the SW platform comps{@8$, drivers, etc.)

» Mapping.xml describing the allocation of the menpartitions to HW resources

Starting from these intermediate files, a codesgatior tool is called. This tool au-
tomatically generates a set of several files thatraquired to create the executable
files and the configuration files for the SCoPE gy@ator. The creation of the executa-
ble files includes the following steps.

The first step consists in the generation of thi#e&S implementing the semantics
of the channels. Generation of threads, servids,@hta splitting and synchronization
mechanisms are implemented in order to generatedheurrent architecture defined
in the UML model. A file is generated for each apgtion component defined in the
model, implementing the management required toigeothe communication behav-
ior defined for each function of the component iifatees, depending on its role (pro-
vided or required).

The goals of the second step are the generationmagipers for the interfaces re-
lated to each component. Transfer mechanisms grkenmented in a generic commu-
nication library providing different implementati®fior inter-process communication,
intra-process communication and communications &éetwdifferent operating sys-
tems (TCP/IP). Thus, adaptation wrappers are requio connect the generic func-
tions of the library to each function of the componinterfaces, considering the func-
tion name and the type, size and direction of tigriments and returned value. All
this information is encapsulated in generic buftbest are transferred by the commu-
nication library and recovered in the target congrn

When memory space definitions indicate the typearafisfer required for each
communication, main files are generated, one fahaaemory space. This enables
the support of multi-OS systems, and simplifiesititegration of third party codes.

Finally, all the generated C files are compiledetibgr with the application files
provided by the user using the Makefiles generétech the UML/MARTE model.
Then, the compiled code can be executed in the EGifAulator together with the
XML files required to configure the virtual platfor This compiled compiled code
can also be used for is integration in the physptatform.

5 Application Example

The UML/MARTE approach proposed has been applied tdPEG-4 encoder
application, trying to decide on an optimal impletaion on an OMAP4 HW plat-
form. The MPEG-4 encoder is an industry-standamdsisting of a motion-estimation
and compensation phase followed by transformatmah entropy coding phases. The
UML model created contains a set of functional kfodMEMC (MotionEstimation-
MotionCompensation), TCTU (TextureCoding-Textureldigd, EntropyCoding (EC)
and BitstreamPacketizing (BP).

The MPEG-4 encoder implementation used in this papables different system
configurations to be established by modifying tharmel semantics of the model,
following figure 1. From an initial sequential ingwhentation, channel semantics en-
able the definition of different parallel regiogdditionally, several copies of a paral-
lel region can be called in parallel, operatingwgplit data. Automatically generated
code controls the concurrency, data managementsgnchronization required to
interconnect all the components.

During the exploration, the 6 configurations shawfigure 1 have been evaluated
with the simulation tool, as shown in table 1. Aseault, one of the best configura-
tions found (“concurrent 3") has been automaticaitggrated into the final platform
without additional effort.

Table 1. Performance estimations obtained by the simutilioing the exploration phase.

Architecture Sequential Concurrent Concurrent 2 Concurrent 3 Concurrent 4 Concurrent 5

E;t('emated 1254s 8.25s 7.26s 6.82s 6.86 s 6.82s

6 Conclusions

The paper presents an approach for easy exploratioancurrency architectures
in embedded designs. The approach takes advarntagesatension to UML/MARTE
to model the different architectures, and autoradijicynthesize the SW communica-
tions from the UML/MARTE models. The automatic syesis process and the inter-
mediate generation of XML files enable easy exploraof different allocations of
SW components using the SCoPE tool. From the UMHeha generator synthesizes
the communication wrappers and the main C files aompletely ad-hoc way for the
application, reducing the overhead obtained withengeneric design alternatives.

The approach enables easy and early exploratitimeeadystem concurrency archi-
tecture, simplifying the consideration of consttaiim the design process, and obtain-
ing the final executable file for the physical fdam from a single, integrated flow.

References

1. Y. Vanderperren, W. Mueller, and W. Dehaene, 1UKr electronic systems design: a
comprehensive overview,” Design Automation for Eohtbed Systems, 2008.

2. L. Lavagno, G. Martin, B. Selic. “UML for realedign of embedded real-time systems”,
ISBN 1-4020-7501-4

3. Zeligsoft CX, www.zeligsoft.com

4. E. Piel, R. Atitallah, P. Marquet, S. Meftali, [Siar, A. Etien, J.-L. Dekeyser, P. Boulet:
“Gaspard2: from MARTE to SystemC Simulation”, protthee DATE'08 workshop, 2008.

5. V. Papailiopoulou, et al: “From design-time corrency to effective implementation paral-
lelism: The multi-clock reactive case”. ElectroSigstem Level Synthesis Conference, 2011

6. An Embedded System Modeling Methodology for Bes$pace Exploration. JCE 2012.

7. J. Barba, F. Rincén, F. Moya, J.D. Dondo J.C. Lopg#zcomprehensive integration infra-
structure for embedded system design”, Micropramssand Microsystems, 2012.

8. A. Pimentel, C. Erbas: A Systematic Approach xpl&ring Embedded System Architecture

at Multiple Abstraction Levels, IEEE Transactionms@omputers, vol 55, Feb 2006

9. T. Kangas, P Kukkala et al: “UML-based Multipessor SoC design Framework”, ACM

Transactions on Embedded Computing Systems, May 2006

10. SCoPE www.teisa.unican.es/scope

11. P. Peiiil, H. Posadas, A. Nicolas, E. Villar:.utdmatic synthesis from UML/MARTE
models using channel semantics”, ACES-MB workshopd&®2012

