
Int. Conf. on HW/SW codesign and HW synthesis
(CODES-ISSS 2012)
Embedded System Week
(ESWeek 2012)
Tampere, Finland

F. Herrera, H. Posadas, P. Peñil, E. Villar

F. Ferrero, R. Valencia
2 Introduction: The challenge for the System Designer

- A competitive product
 - Optimum Design

- Short time to Market
 - Successful Design ≠ Successful Product

- Complex systems
 - Functionality...
 - …and Performance!

- Complex Design Problem
 - Application, Platform, Mapping, …
Classic slow DSE approach

- System Model
 - Design Space, Architectural mapping, Scenarios?
 - (Manual) Edition of the model
 - Design Solution
 - Unsuitable search
 - Specific optimizations

- Performance Analysis
 - RTL, ISS
 - Generation
 - Constraints

- Exploration Strategy
 - Few metrics

- Performance Metrics
 - DSE loop

Model specific for performance analysis technique
not standard!
Introduction: The UML/MARTE COMPLEX DSE Solution

- UML/MARTE Model
 - Abstract, but detailed for Performance Analysis
 - MDD, CBD, SW centric
 - Exploration Space: one model, many designs
 - Performance and Exploration Constraints
 - Comprises Scenarios

- Configurable & Executable Performance Model
 - A Single & Automated Generation
 - Functional Validation
 - Fast Simulation
 - No recompilation

- Design Solution
 - Exploration Constraints
 - Objective Functions

- Exploration Tool
 - Automated
 - Advanced Search Alg.
 - Analysis & Representation

- DSE loop
 - Rich set of Performance Metrics
5 A Zoom into the flow

COMPLEX ECLIPSE Application

- Scenarios
- PIM (App) Architectural Mapping
- HW/SW Platform
- Design Space
- DSE Constr.
- Opt. Goals

Model-to-Tex-Transformations

- CFAM
- XML
- IP-XACT

- XML
- XML
- Build
- Expl.

- MOST

- C/ C++

- XML

- EXE
6 COMPLEX UML/MARTE Modeling Methodology: Main Features

- MDD concepts: **Separation of Concerns**
- **CBE**: Component-Based Engineering approach
- SW centric
- DSE oriented
- UML-based
 - **MARTE profile**: Capture most of the RTE required semantics
 - **COMPLEX profile**: Defines DSE specific aspects not covered by MARTE (by any other profile)
The modeling methodology states a well-defined flow

Fulfill Industrial needs:
- The flow exposes dependencies and independencies among modeling tasks (some views can be captured in parallel and by different specialist of the team)
8 PIM Modeling I: Data View and Functional View

Data View: Declare Data Types for Communication Interfaces

- **Primitive Types**
 - Word16
 - Bit

- **Data Structures**
 - rawSFrameT
 - sample : Word16 [160]
 - txSFrameT
 - collectionAttrib=bitstream
 - bitstream : Bit [246]
 - rxSFrameT
 - collectionAttrib=bitstream
 - bitstream : Bit [247]

- **Arrays**
 - Info4VadT
 - r_h : array11Coeff
 - r_l : array11Coeff
 - scal_acf : Word16
 - rc : array4Lags
 - pitch : Word16
 - array11Coeff
 - collectionAttrib=coeff
 - array4Lags
 - collectionAttrib=lag
9 PIM Modeling I: Data View and Functional View

- **Functional View**
 - Declare **Component Interfaces** and **Functional Classes**
 - Classes **implement** Interfaces and **require** the services of other interfaces
Captures **Application Component Architecture** (Composite diagram)

- Application components: provided and required operations (in SW centric)
- Component instances declared in C&C view (UML properties) to build Application Architecture (PIM)
11 Platform View

- Declares the main components of the platform
 - Software Components: OS, Drivers, ...
 - Hardware Components: Processors, Memories, Buses, Custom HW, I/O
- Modelling entities: Components with MARTE stereotypes

- SW

- HW
12 Architectural View

► System Component (UML Component) representing the PSM

► Composite Diagram reflecting:
 ► Application Component instances
 ► Architectural Mapping
 ► System I/O
 ► Platform Architecture
13 DSE Features

- Capturing the Exploration Space in a single model
- Defining a set of Scenarios
 - which allows the selection of the scenarios to be explored
- Capturing the Output metrics
 - which will be used as input for selecting the next experiment
 - finally determining the Pareto points

- The Design Space is composed of
 - A set of Architectural Mappings
 - A set of configurable attributes for Platform Components
 - A set of Platforms
 - A set of DSE Constrains and rules
14 Modeling the Design Space: Architectural Mapping Space

- Mapping of an application component to **several** platform components
 - UML Comment
 - MARTE <<Assign> stereotype
 - in the Architectural view

- Defining **exclusive** architectural mappings
- **Several** platform architectures in the platform view
 - COMPLEX <<dseAllocationParameter>>
 - Let assign a name to the allocation
    ```
    <<dseAllocationParameter>
    <<DseAllocationParameter>
    name=DAP1
    <<Assign>>
    from=[controller]
    to=[micro1,micro2]
    ```
Output Metrics

- Output metrics used by the goal functions in DSE
 - General application metrics on the platform architecture
- Definition of application-dependent metrics
 - COMPLEX <<dseAppEstimation>>
 - e.g., “get the maximum execution time for receiving, coding and sending a voice subframe”
16 SCoPE+ performance model

- SCOPE
 - Native simulation
 - SW estimation
 - Performance figures

- SCoPE+:
 - CFAM API
 - multiple computational models &
 - Architectural mappings
 - Integration of SW&HW estimations
 - Communication Impacts
 - Synchronization with a SystemC environment
Conclusions

- COMPLEX UML/MARTE modeling methodology
 - Support the development of models of COMPLEX systems for DSE

- Automated generation of the executable and configurable performance model relying on:
 - A text-based representation which improves extensibility

- COMPLEX Eclipse Application integrates the high-level estimation and exploration tools
 - Executable and configurable performance model
 - Avoids UML/MARTE model refactoring for the exploration
 - Enables an automated steering by the exploration tool