

Automatic synthesis of embedded SW Communications from
UML/marte models supporting memory space separation

 Héctor Posadas, Pablo Peñil, Alejandro Nicolás & Eugenio Villar

TEISA dept., University of Cantabria
Santander, Spain

{posadash, pablop, nicolasa, villar}@teisa.unican.es

Abstract— The proposed approach presents a solution for
automatically synthesizing the SW code of complex embedded
systems from a model driven system specification. The solution
is oriented to enable easy exploration and design of different
allocation of SW components in heterogeneous platform,
minimizing designer effort. The system is initially described
following the UML/MARTE standard. Applying this standard,
the system is modeled, describing its components, interfaces
and communication links, the system memory spaces, the
resource allocations and the HW architecture. From that
information, a SW infrastructure containing the
communication infrastructure is generated ad-hoc for the
system depending on the HW architecture and the resource
allocations evaluated. As a result, the infrastructure
synthesized is more specific and simple than previous
approaches using solutions such as CORBA or RMI. The
consequent communication overhead reduction can result in an
important advantage for system performance.

Index Terms— System on Chip One, Software
Synthesis, Design Space Exploration

I. INTRODUCTION

The evolution of fabrication technologies has enabled the
development of powerful System on Chips containing
multiple heterogeneous processors of different types,
including CPUs, DSPs or GPUs. As a result, these systems
can support large and complex functionalities. In order to
handle this complexity design flows are evolving to start
working at higher levels of abstraction. Designing at higher
levels of abstraction is an effective way deal with large
system complexities, selecting optimal configurations and
verifying system constraints early in the design process. To
do so, two main issues have to be solved. First, it is required
to provide methodologies where designers can easily
describe the system functionality, considering all the
interactions among its functional components. Then,
solutions capable of optimizing the implementation of this
functional description are needed.

Model driven design methodologies are being commonly
adopted to handle the design of large functionalities. Latest

design methodologies start from high-level UML models
combined with algorithmic codes (e.g. C, C++, Matlab, etc.)
of the different system components [1]. In these models, the
user defines the system functionality using a platform-
independent model (PIM). Then, given a platform definition
model (PDM), the PIM is translated to one or more
platform-specific models (PSMs), where resource
allocations are specified.

In order to achieve an optimal solution for the final
system, the most promising platform-specific model has to
be selected before the implementation process starts. Design
space exploration (DSE) solutions have been proposed to
perform this selection process. However, there is still much
work required to develop solutions capable of minimizing
the effort required to provide the accurate estimation metrics
the DSE tools require to evaluate the quality of all the
different possible implementations from the initial system
models. The connection between high level modeling
languages, such as UML, and the initial implementations
required for performance evaluation currently implies large
synthesis processes; processes that cannot be performed
manually if designers want to enhance the productivity of the
design cycle. Thus, solutions enabling automatic synthesis
are required.

 In this paper, a SW centric design flow is presented.
This design flow starts by capturing in UML/MARTE
models the most relevant system information related to the
SW application structure, the specification of the parallel
structure defined by memory partitions an the corresponding
allocation into the HW platform. From the UML/MARTE
models, a transformation process can be implemented that
enables the obtaining of the SW infrastructure required for
the synthesis. The proposed approach performs the synthesis
of the different possible implementations to be explored
considering that the functional code is provided by the user.
The approach generates the final executable files focusing
on the maintenance of the memory spaces and automatically
generating the communication infrastructures.

The use of the information described in the UML model,
enables the automatic generation of ad-hoc communications
infrastructures supporting interconnection of the different
system component. The synthesis of ad-hoc communication This work has been founded by the PHARAON FP7-288307 and the

Spanish TEC2011-28666-C04-02 MCI projects.

488

Proceedings of DCIS 2012: xxviith conference on design of circuits and integrated systems

infrastructures produce more specific and simple results than
previous approaches using solutions such as CORBA or
Remote Method Invocation (RMI) [11], which relay in more
complex solutions, capable of being reused in a wide range
of use cases. The use of simpler infrastructures provokes a
reduction of communication overloads, which can give
benefits when optimizing embedded system performance.
Additionally, it avoids the effort of manually generating and
filling the skeletons required to apply these generic
communication infrastructures.

In order to present this approach, the paper is divided as
follows. First, the state of the art is described. Second, the
complete flow is presented. In section 4, the UML/MARTE
methodology is shown. In section 5, the synthesis process is
described. Then, an example is described in section 6.
Finally, results, conclusions and future work are presented.

II. STATE OF THE ART

Automatic synthesis of code from high level models has
obtained an important interest in last decade. For example,
several works focused on synthesis for embedded SoCs
design from SystemC approaches have appeared. In [11] a
generic framework for HW/SW communication of
functional tasks with shared resources, called Shared
Objects is presented. Communication is implemented using
a method-based interface realizing a RMI protocol. In order
to analyze timing requirements of the HW/SW blocks
separation and the bindings established among these
HW/SW blocks, the authors propose a transparent
communication mechanism and synthesis support for
communication across the HW/SW boundary. In [12], a
method for systematic embedded software generation is
presented. There, the SW code (processes and process
communication, including HW/SW interfaces) is
systematically generated, from SystemC threads.

However, other non specific high-level modeling
solutions, such as UML, have also been applied in that
context. The application scope of UML [3] has evolved from
object-oriented software systems modeling to cover different
design domains. In this context, research to apply UML to
the design of embedded systems has gained increasing
interest, [1] [2], both in the application of the models in the
design flows and in the evolution of the UML language [4].

Most of the efforts spent on the integration of UML
within embedded design processes, have focused on
synthesis. Several researches on synthesis based on UML
models are characterized by the creation of state machine
models or variations of them [13]. In [5], a formal design for
reconfigurable, modular digital controller logic synthesis is
presented. By means of UML state machines concurrent
super-states are modeled, enabling the direct, automatic
mapping on structured array of cells in FPGAs.

Nevertheless, not only state machine modes have been
used for synthesis. In [6], a set of transformation rules for
synthesis of code from UML activity diagrams are

presented. UML Sequence diagrams are used to define
control flow patterns, and then, they are transformed in
Activity diagrams according to a different set of
transformations rules.

Other relevant research area focuses on the development
of HW/SW communications within UML-based
methodologies. In [7] a semi-automatic solution for
generation of HW/SW infrastructure from UML models is
presented. This solution implements high-level
programming interface (software drivers and hardware
adapters) using Remote Method Invocation (RMI) semantics
as the framework to unify the communication interfaces for
all HW and SW components. The automatic generation is
dealt with by means of a template-based mechanism.

In [8], a method is proposed for synthesizing interfaces
for heterogeneous IP integration from UML models. The
framework supports both interface protocol customization
and glue logic generation, thereby maximizing IP
integration. Additionally, the framework enables the
generation of the communication links among the system
blocks from UML profiles used to model the system level
communication interfaces.

However, UML, as a completely generic language,
usually lacks of all the semantics required to adequately
model all the characteristics of embedded systems. In order
to confront the challenge to cover the complete design flow
of real-time embedded systems, the MARTE profile was
created [4].

The MARTE profile is an OMG standard that offers a
rich set of extensions specifically suited for the specification
of embedded real-time systems. MARTE enables building
models containing detailed information about application
structure, concurrency infrastructure, the HW/SW platform
specification and the system architecture Taking MARTE-
based models as input, several synthesis approaches have
also been proposed. Gaspard2 [10] is a design environment
for data-intensive applications which enables MARTE
description of both, the application and the hardware
platform, including MPSoC and regular structures. Through
model transformations, Gaspard2 is able to generate an
executable TLM SystemC platform at the timed
programmers view (PVT) level.

In [9] the complete design flow to move from high level
MARTE models to code generation, for implementation of
dynamically reconfigurable SoCs is presented. In this paper,
generic control semantics for the specification of adaptative
and dynamic reconfigurable SoCs is presented. In [14] a
design flow based on high level languages (SysML,
MARTE, SystemC…) enables the generation of the
deterministic multi-threaded code for parallel
implementations.

Nevertheless, all the previous solutions are oriented to
generation of previously fixed models, leaving architectural
decisions to rely on designers experience. However, with the
improvement of evaluation tools such as virtualization

489

7C Digital platforms

(QEMU [15], OVP [16]) and DSE solutions [17],
approaches oriented to support configurability, and
especially different resource allocations are required. As a
result, this paper focused on that area.

III. PROPOSED FLOW

The goal of the proposed flow is to enable selecting the
most adequate allocation for the system under development
with minimal design effort. Thus, it is required to provide a
way to describe the system under design, and then, a
solution capable of generating the inputs required by the
simulation tool selected by the designer to estimate the
performance metrics of the different alternatives. ISSs and
Virtualization tools such as QEMU are usually selected for
that task. In both cases, the inputs required are mainly the
executable binary files that should run on the processing
resources of the target platform. Additionally, rapid
prototyping solutions can be also applied to evaluate the
different design possibilities. In that case, similar binary files
are also required. Finally, the resulting files for the selected
allocation can be directly used in the final design or can be
refined by the designer. Thus, the main challenge of this
paper is to solve the automatic generation of these binary
files though a synthesis process.

Fig. 1 Proposed Synthesis Flow.

The proposed design flow (figure 1) starts from the
UML/MARTE model of the system. This model is provided
by the designer. The model is composed of three main
elements. The first one is the platform independent model
(PIM) which describes the functional components, (their
interfaces and the functional code) and the interconnections
among them. Secondly, a platform description model (PDM)
describing the HW platform composed of the available
processing elements and their interconnection. And finally,
the UML/MARTE model contains the architectural
mappings to be evaluated, which are specified in the
platform specific model (PSM) [8]. Additionally, the user
must provide the functional C codes for all the system
components of the PIM.

From this information, an infrastructure developed in
Eclipse generates all the elements required to create the

binary files required for simulation or physical execution.
The elements generated can be grouped in three sets. First,
the infrastructure generates the wrappers that communicate
the interfaces of the components in different memory spaces
using the resources of the platform. Secondly, makefiles are
generated in order to enable automatic execution of the
compilation processes. Finally, linker scripts are generated
when needed, from the information of the PDM.

These elements are used by the compiler together with
the functional C code provided by the user and a
communication library already developed as part of the
proposed flow. This library contains the basic solutions for
communicating components depending on their allocations:
different processes in the same OS, processes in different
nodes communicated by TCP/IP connections, etc.

As a result, the proposed approach automatically
generates the executable files combining the functional,
separated codes for all the system components, which are
provided by the user, together with synthesized
communication wrappers, and compiled ensuring the
maintenance of the memory spaces. This memory spaces
enables the combination of separate functional codes
avoiding interferences among components.

IV. UML/MARTE MODELING

The system under design is specified by an
UML/MARTE model before starting the flow. The graphical
orientation of UML helps designers to handle large systems
in an easy way. However, the UML/MARTE model has to
contain all the relevant, essential information of the system,
in order to enable performing the synthesis process. Thus, it
is required to define a UML/MARTE methodology
combining the benefits of a visual language with large
amounts of information. To solve that point, the information
contained in a UML/MARTE model is separated in specific
concerns, depending on their application area. Each concern
is captured in a model view, which is represented using the
UML diagrams that most fit the concern. In order to
distinguish this model views, a set of stereotypes have been
defined. These stereotypes identify the system concern to be
modeled with the notation <<SystemConcernView>>.

Additionally, the views of the system model are grouped
forming three different viewpoints: the Platform
Independent Model, PIM), the Platform Description Model,
(PDM), and Platform Specific Model (PSM). The PIM
describes the system functionality (e.g. application,
functional code, interfaces). The PDM describes the
different HW and SW resources that form part of the system
platform. Finally, the PSM describes the system architecture
and the allocation of the application components into the
platform resources.

PDM and PSM models can be solved using a single view
for each one, since the information supported is not too
wide: a view describing the HW components of the platform

490

Proceedings of DCIS 2012: xxviith conference on design of circuits and integrated systems

and their interconnections for the PDM and a view where
memory spaces are mapped to HW resources for the PSM.
More information on these views can be found in [18].

However, the description of the functionality requires
much more detail, making the PIM to rely on the use of four
views: Functional view, Concurrency view, Communication
view and Memory-Allocation view. As a result the designer
obtains a complete system model that can be easily handled
to support the system design.

First, the internals of the functional components of the
systems are described using an UML package that is
specified by the stereotype <<FunctionalView>>.
FunctionalView includes both the specification of the
functionality and the interfaces provided and required by
each application components. Each application component
has associated a set of C code files that define the
component functionality. These files are modelled as UML
artefacts using the UML standard stereotype <<file>>.

In a second step, internal concurrency of the system
application components is modelled using the stereotype
<<ConcurrencyView>>. The application components are
modelled by the MARTE stereotype <<RtUnit>> included
in the MARTE subprofile High-Level application modeling
(HLAM). Each RtUnit component has their own execution
thread, providing/requiring services to/from others
application components by means of provided and required
interfaces. The association among files and RtUnits is
defined by means of a UML abstraction, specified by the
MARTE stereotype <<allocated>>, included in the MARTE
subprofile Allocation Modeling (Alloc). An example of view
describing these relationships can be shown in Figure 2.

Figure 2. <<RtUnit>> components and their associated <<file>>

 Additionally, the ConcurrencyView includes the
application structure, defined by instances of the application
components and the way there are interconnected. The
application components are interconnected by means of
UML connectors that represent communicating channels.
Communications are established through UML ports, where
the provided/required interfaces of each application
component are defined.

The UML connectors are specified by means of the
UML components defined in another model view, the
<<CommunicationView>>, which is also part of the PIM.

The CommunicationView includes the elements that define
the semantics of the channels used to interconnect the
application components. The MARTE stereotype used to
specify these communicating components is the
<<CommunicationMedia>>, included in the MARTE sub-
profile Generic Resource Modeling (GRM). The modeling
of the set of specific communication semantics that a
CommunicationMedia can capture is out of the scope of this
paper.

Finally, the allocation of the application components into
memory spaces is dealt with in a system view identified by
the stereotype <<MemoryAllocView>>. The
MemoryAllocView package contains the components that
identify the different memory spaces that are used for the
allocation process of the application components. These
memory spaces are modeled by the MARTE stereotype
<<MemoryPartition>>, which is included in the MARTE
subprofile Software Resource Modeling (SRM).

After modelling the MemoryPartition components, the
application components have to be allocated into these
memory partitions. The mapping of the application
components into memory partitions is dealt with in a UML
composite structure diagram included in the
MemoryAllocView package. In this diagram, the application
instances defined in the ConcurrencyView are mapped into
instances of MemoryPartions components. The application
component instances are mapped to memory partition
instances by means of UML abstractions specified by the
MARTE stereotype <<allocate>> (Figure 3).

Figure 3. Mapping SW components to HW resources

V. AUTOMATIC BINARY GENERATION

From the UML model and original C code that
implement the application functionality, the generator
produce a set of files that includes C wrappers that enables
the communication among the application components and
the compilation scripts. The interface wrappers use the
facilities provided by a communication library to implement
the final communication mechanisms.

A. Interface wrappers
The code generator extracts from the UML model the

necessary information for application components and its
communications. This information must be reflected on the
model and contained in the corresponding system views:

491

7C Digital platforms

• the ConcurrencyView where the application
components are defined, and the way they are
interconnected; the required/provided interfaces
and the channels

• the CommunicationView where the communicating
components are defined

• the PDM view, where the physical communication
mechanisms are displayed

• the PSM, where the resource allocations are
described

 All this information is used by the code generator to
write the communication wrapper codes depending on the
allocation of each component involved in each
communication, details about the arguments that have to be
transferred on each communication (data type, size, and
direction: in, out or inout), and the physical resources the
HW platform provides to communicate the processors.

B. Communication libraries
A library for communication between the application

components was implemented. This communication library
enables the synthesis of the communication infrastructures
from the information captured in the UML/MARTE models.
In the current approach, the communication implemented is
based on the client-server paradigm.

On the client side when an application requires a service
from other application, the client application generates a
new thread for the request. Firstly, this thread generates, for
each parameter of the service, a parameter structure with
the information about the parameter: an unique identifier in
the call, the size of the data parameter in bytes, the type (e.g.
return, in, inout), a flag indicating if the parameter is pointer
or not, and the pointer indicating where the data is in the
process local memory. Then, the thread generates a request
structure with the information of the request with the type
(blocking or not blocking), the identifier of the function
required, the number of parameters, and finally links into
this request structure all parameter structure created
before. The request structure is used by the interface
communication to store data in the channel and to modify
local data when the request is completed. Finally, if the
request is non-blocking, the thread finishes, doing the
opposite in the blocking case. Once the response is
available, the thread modifies locally the original data for
the new one and finishes.

On the other side, the server has an active part, which is
in charge of constantly listening to each incoming
communication channels waiting for the requests. When one
request through a communication channel is received, the
server registers the data and generates a new thread to attend
it, and continues listening to the communication channel. So
then, once the petition is completed, the server stores the
new data in the communication channel.

C. Execution flow structure

As a result of the previous elements, several execution
flows can be found in the resulting code. In addition to all
execution flows required by the functional components to
execute their functionality, each server application has one
thread attending each channel which it is connected.
Moreover, to attend each request a new thread will be
generated, finishing when request is completed.

On the other hand, the client application has its own
execution flow and generates a new thread when it needs
require a service from other different application
component. The request could be blocking or not, so it is
necessary to allow that the application flow can wait the
response or not and continue.

VI. MULTI-PROCESS EXAMPLE

An application example has been developed to check the
abilities of the proposed approach for exploration activities.
The application consists on four application components.
Two components acts like servers providing specific
functionality through provided interfaces. In addition, the
other two components acts like clients requiring, at some
time, the functionalities that are provided by the servers;
both servers are connected with both clients. Each client
obtains a set of two matrixes of points from grey images and
accesses the servers to manipulate them. More precisely, the
clients use the first server to get the inverse image of the first
matrix and then access to the other server to add this inverse
image with the other image.

Figure 4. Architecture of the proposed example

Figure 4 shows the UML model that captures the
architecture of the application with the four application
components, the two server applications and the two client
applications (server_1, server_2 and client_1, client_2,
respectively). The application components are
interconnected by means of UML connectors that represent
communicating channels (ch_s1_c1, ch_s1_c2, ch_s2_c1
and ch_s2_c2). The communication is established through
UML ports, where the provided/required interfaces of each
application component are defined.

In the code synthesized from the UML model, a main
program file is generated by each application. The main files
contain the necessary code infrastructure for the
implementation of the communication among the application

492

Proceedings of DCIS 2012: xxviith conference on design of circuits and integrated systems

components. Specifically for the server case, the files add an
active element that is listening to the channel of
communication. Additionally, for each system interface
included in the FuntionalView a file is generated in order to
enable the calls to the functions provided by these interfaces.

Finally, once the code files are generated, a makefile is
generated to compile and link the whole application
components with the communication interface to generate
the target executable files.

The proposed infrastructure has been applied to explore
two different implementations of the communications among
clients and services: using fifos from the operating system or
using TCP/IP sockets. The execution of the application
components has been run on two different HW platforms.
The first one was a common laptop (Intel Core 2 Duo
@2.00GHz) and the second one was on a Panda Board
(OMAP4430 Cortex-A9 @1.0GHz). The execution worked
with 1920x1080 matrixes of integer values. From these
simulations, the results of table 1 have been extracted using
the “time” Linux command.

TABLE I. TABLE TYPE STYLES

Board Laptop
App.

TIME
(sec) Fifo Socket Fifo Socket
REAL 2.127 2.835 0.338 0.829
USER 0.750 0.797 0.124 0.128

Client
1

SYS 0.508 0.570 0.100 0.136
REAL 2.201 2.990 0.356 0.732

USER 0.852 0.781 0.136 0.132
Client

2
SYS 0.445 0.852 0.080 0.092

The proposed approach has enabled performing the
comparison without manual porting effort. As a result, it can
be stated that fifo communications are faster than sockets,
which can lead to an optimal implementation.

VII. CONCLUSIONS AND FUTURE WORK

The proposed approach presents a solution for
automatically synthesizing the SW code of complex
embedded systems from a UML/MARTE models. The
automatic synthesis process enables easy exploration of
different allocation of SW components, since simulators
such as ISSs, virtualization tools and rapid prototyping
solutions can be performed with minimal designer effort.

The system is initially described following the
UML/MARTE standard. The resulting model contains all
information from functionality, HW platform and allocation
required to perform the automatic synthesis. To do so while
maintaining the enough simplicity in the visual diagrams, the
information is displayed in several views. From this model, a
generator synthesize the communication wrappers
completely ad-hoc for the application, reducing the overhead
obtained with more generic solutions.

The approach enables easy exploration by focusing the
system model on the definition of memory spaces. By

identifying the memory spaces of the components, their
interfaces and allocation, it is possible to generate binary
files for different allocations from the same inputs.

Additionally, the generated wrappers can implement
different communications using basic communication
facilities. Communication facilities to connect memory
spaces in the same OS and memory spaces in OSs connected
through TCP-IP protocol have been implemented.
Additional communication types, such as CPU-DSP
communication will be solved in future works. Moreover,
deep analysis on the effect of the proposed communication
infrastructures in system performance, and their comparison
with other infrastructures such as CORBA or RMI are still
pending.

VIII. REFERENCES

[1]. Y. Vanderperren, W. Mueller, and W. Dehaene, “UML for electronic
systems design: a comprehensive overview,” Design Automation for
Embedded Systems, vol. 12, no. 4, 2008

[2]. L. Lavagno, G. Martin, B. Selic. “UML for real: design of embedded
real-time systems”, ISBN 1-4020-7501-4.

[3]. “UML profile for system on chip (SoC) specification”. 2006

[4]. OMG: "UML Profile for MARTE", www.omgmarte.org, 2009.

[5]. M. Adamski. Design of reconfigurable logic controllers from
hierarchical UML state machines. 2009 4th IEEE Conference on
Industrial Electronics and Applications, ICIEA 2009

[6]. S. Kang, H. Kim, J. Baik, H. Choi, C. Keum.Transformation Rules
for Synthesis of UML Activity Diagram from Scenario-Based
Specification. IEEE Proceedings of 34th Annual Computer Software
and Applications Conference (COMPSAC), 2010.

[7]. J. Barba, F. Rincón, F. Moya, D. Villa, F.J. Villanueva, J.C. López.
“Automatic HW/SW Interface Generation for Seamless Integration
from Object-Oriented Models”, International Conference on
Embedded Systems & Applications. ESA, 2009.

[8]. S. Zhenxin, W. Weng-Fai. A UML-based approach for heterogeneous
IP integration. Proceedings of ASP-DAC, 2009.

[9]. I. R. Quadri, H. Yu, A. Gamatié, E. Rutten, S. Meftali, J-L. Dekeyser.
Targeting reconfigurable FPGA based SoCs using the UML MARTE
profile: From high abstraction levels to code generation. International
Journal of Embedded Systems, 2010.

[10]. É. Piel, R. Atitallah, P. Marquet, S. Meftali, S. Niar, A. Etien, J.-L.
Dekeyser, P. Boulet: "Gaspard2: from MARTE to SystemC
Simulation", proc. of the DATE'08 workshop on Modeling and
Analysis of RT Embedded Systems with the MARTE UML profile.

[11]. P.A. Hartmann, K. Gruttner, P. Ittershagen, A. Rettberg.”A
framework for generic HW/SW communication using remote method
invocation”. ESLSyn, 2011.

[12]. F. Herrera, H. Posadas, P. Sánchez, and E. Villar, “Systematic
Embedded Software Generation from SystemC”, DATE, 2003.

[13]. D. Harel, H. Kugler, and A. Pnueli, “Synthesis revisited: Generating
statechart models from scenario-based requirements,” Formal
Methods in Software and System Modeling, 2005.

[14]. V. Papailiopoulou, et al: “From design-time concurrency to effective
implementation parallelism: The multi-clock reactive case”.
Electronic System Level Synthesis Conference, 2011

[15]. QEMU, www.qemu.org

[16]. Open Virtual Platforms, http://www.ovpworld.org/

[17]. Multicube Explorer, http://home.dei.polimi.it/zaccaria/
multicube_explorer_v1/Home.html

[18]. F. Herrera, P. Peñil, E. Villar, Francisco Ferrero, Raúl Valencia: “An
Embedded System Modelling Methodology for Design Space
Exploration”, SARTECO 2012

493

7C Digital platforms

	Foreword
	Committees
	Conference program
	K1 Keynote
	Energy efficiency in today's mpsoc and utbb fdsoi technology benefits

	P1 Parallel Pres.
	Synthesis of qubit models for logic functions
	VHDL modeling and top level simulation of complex mixed-signal IC designs
	An RF receiver based on current conveyors for DVB-SH
	Interconnection networks for tightly coupled processors in FPGA
	A unified formalism for side-channel and fault attacks on cryptographic circuits
	Image resolution enhancement in underwater applications
	On-chip chaos generation

	1A Implementing algorithms in FPGA
	Design and implementation of floating-point FFT architectures for FPGA devices
	FPGA implementation of the MVCA algorithm for remote sensing applications
	FGPA implementation of QR decomposition for medium size matrices
	A fault-tolerant implementation on FPGA of a hopfield neural network

	1B Transmitters
	Optical transmitter for ultra-wide band signals in the 3.168-3.696 GHz frequency range
	Universal low frequency transceiver for biomedical applications in completely sealed titanium housings
	Study of the analog baseband components of a WCDMA base station LINC transmitter
	Modeling and optimization of a low noise RF transmitter for cochlear implant application

	1C Around Sensors
	High speed low power front-end system with adjustable peaking time for silicon detectors
	CMOS analog conditioning circuit for PIR sensors
	A hardware platform for automotive wireless sensor networks
	Using a wired body area network for locomation data acquisition

	2A Test and verification
	Development of an UVM environment for functional verification of digital systems
	On-chip test comparison for protecting confidential data in secure ICs
	IEEE Std 1149.7: What? Why? Where?

	2B Communications
	L1 signaling mobility performance in DVB-T2 receivers
	Functional validation of MB-OFDM system using HW-in the loop
	Simplified metrics for DVB-NGH MIMO decoders

	2C Amplification
	Wide-range CMOS transconductor based on FGMOS regulated cascode current followers
	Method to evaluate efficiency of audio class G amplifier in realistic condition
	Low-voltage highly-linear class AB current mirror with dynamic cascode biasing

	A Variability and reliability in advanced integrated circuits and systems
	Keynote
	Research experiences

	B Biomedical systems and devices
	13.56MHz-based pressure sensor dedicated for the monitoring of abdominal aortic aneurysm
	FPGA-Based Platform design of a Bio-Inspired Medical Hearing : Prosody modification of speech
	Embeddable automatic polyp detection for videoendoscopy and wireless videoendoscopy images analysis

	C Hardware security
	Attacks on secure devices
	Protecting embedded systems through system level security mechanisms: from boot-up to steady state execution
	Hardware security design: from secure architecture to secure logic

	3A Fault injection and mitigation
	Comparison of FPGA platforms for emulation-based fault injections using run-time reconfiguration
	System fault-tolerance analysis of small satellite on-board computers
	Approximate logic functions for SET mitigation in sequential circuits

	3B Converters
	Effect of circuit errors on hybrid continuous-time/discrete-time sigma-delta modulators
	A 65-nm 8-bits current DAC with gate leakage current compensation
	Digital modular control of high frequency DC-DC converters

	3C More than CMOS
	Accurate frequency counting architecture for vibrating accelerometers on FPGA
	Built-in test of MEMS capacitive accelerometers for field failures and aging degradation
	Model validation and simulation framework for novel nanometer devices and its application to the memristor

	K2 Keynote
	3D system integration under manufacturability limits

	4A Security
	Is side-channel analysis really reliable for detecting hardware trojans?
	SET fault injection attacks on a hardware implementation of the SHA cypher
	Investigation of timing constraints violation as a fault injection means

	4B Analog test
	A tool for statistical modelling by means of copulas of analog and mixed-signal circuits
	Fault list compression for cost-effective analogue and mixed-signal fault simulation
	ActIC: automated characterization test of mixed-signal integrated circuits

	4C Low power
	Power-state control methods for a battery state-of-charge dependent graceful degradation in an ARM-based embedded system
	Energy consumption variations due to capacitive coupling in a CMOS 0.12m technology
	Towards nano-powered voltage reference regulators/circuits for ultra-low power portable electronics

	P2 Parallel Pres.
	Real-time implementation in fgpa of a super-resolution algorithm using macro-block execution flow
	Rf specification driven by multi-objective optimization method
	A time-efficient simulation flow for dac characterization & optimization
	16-level 0-to-36dB automatic gain control with adaptive compensation
	State of the art and trends of partially reconfigurable system design frameworks
	A monitoring system for secondary substations using a wireless sensor network
	tlifting: an open-source delay-annotated fault simulator
	Electromyostimulation and emg real time device with muscle fatigue estimation
	B-splines based built-in self-testing of a rf power amplifier

	5A High-level architectures and algorithms
	A virtual platform for performance estimation of Openmp programs
	Profiling tool for the performance analysis of scalable video decoding
	Handling out-of-order arrival for parallel streaming applications on clustered mpsoc
	An area-efficient radix 28 fft algorithm for dvb-T2 receivers

	5B ADC
	A 0.2pJ/conversion-step 6-bit 200MHz flash adc with redundancy
	A new 1.7GS/s 6-bit flash A/D converter
	A 10-bit in-pixel adc for a cmos image sensor using three-dimensional integration technology
	Analysis and optimization of dynamically reconfigurable regenerative comparators for ultra-low power 6-bit tc-adcs in 90nm cmos technologies

	5C Low-level modeling
	Limitations of cad tools for modeling transistors that implement large resistors
	Extending the closed-form expressions for substrate resistance and capacitance extraction for practical non-ideal shapes
	Semi-empirical model of most and passive devices focused on narrowband rf blocks
	Compact variation-aware standard cell models for statistical static timing analysis incorporating resistive-capacitive loads

	6A SRAM and magnetic RAM
	Mitigation strategies of the variability in 3t1d cell memories scaled beyond 22nm
	Sram stability metric under transient noise
	Magnetic-memory based dynamically reconfigurable array

	6B Simulators
	An ir-drop simulation principle oriented to delay testing
	Simulation of attacks in wireless sensor network
	Backend dielectric reliability full chip simulator

	6C Detectors
	144 channel measurement ic for czt sensors with energy and time resolution
	Silicon-based detectors for sub-millimeter passive imaging
	Development of monolithic detector systems using soi technologies

	7A 3D
	Adaptive self test of defective tsvs
	Modeling the capacitive coupling between tsv arrays and interconnects in 3d ics with fitting-based closed-form relations
	Resistive-open defect analysis for through-silicon-vias

	7B Image
	Design space exploration for high-accuracy 1-dimensional edge detection
	Accelerating lossy hyperspectral image compression on a gpu
	Enhanced single-photon avalanche diode arrays with the gated operation

	7C Digital platforms
	Reconfigurable computing cluster: three domains architecture solution
	Openmax compliant heterogeneous multimedia embedded plaftorm
	Automatic synthesis of embedded sw communications from uml/marte models supporting memory space separation

	P3 Parallel Pres.
	Implementation of precise time synchronization in fpgas: state of the art
	A novel, fast and efficient gps detection method
	Toward functional verifying a family of SystemC descriptions
	CookieLibs: an intuitive software platform for controlling cookies wireless sensor nodes
	A new design of an over-current/short-circuit protection system for low-drop out regulators
	Investigation of partial reconfiguration techniques in autonomous fault tolerant systems
	An enhanced q-tuning concept for biquad ota-c filters

	8A Biomedical application
	Modelling an implantable sensor system for restenosis monitorization in the pulmonary artery
	An impedance-based microscopy for cell-culture imaging using microelectrode sensors
	1-V cmos bulk-driven instrumentation amplifier for indirect blood pressure measurement

	8B Analog modules and high current application
	A charge transfer scheme for effciency optimization in integrated charge pumps
	Model based automatic selection of support shapes in interconnects corner bends for high currents applications
	Closed loop controlled ring oscillator: a variation tolerant self-adaptive clock generation architecture
	Internally compensated ldo regulator based on the folded fvf

	8C RF
	A low power lc-vco and a fast divider for dvb-sh applications
	A reconfigurable cmos power amplifier based on switched power cells for 3gpp lte applications
	A cmos low voltage folded cascode lna for wideband applications

	Author Index

