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Abstract—Verifying the correctness of multi-processing 

embedded systems is a complex task. In order to avoid the 

cost, effort and time that the direct design verification on a 

physical prototype implies, simulation on a virtual model 

of the system is the most popular method used currently. 

Commercially available simulators require the complete 

SW binaries to be executed on each processing node. 

Although they can provide very accurate results, they can 

only be applied once the SW development has been 

completed. Native simulation technologies have been 

proposed to generate virtual platforms at the beginning of 

the design process, reducing porting efforts. As with any 

Discrete-Event simulation technique, native simulation 

presents problems in order to take advantage of the multi-

processing capabilities of current host workstations where 

the simulation will be executed. Several concurrent 

simulated threads can be run in parallel in the host but to 

ensure deterministic behavior, it is necessary to 

synchronize all of them periodically in order to maintain 

causality among events. As a consequence, the number of 

cores that can be active during simulation is dramatically 

reduced. Embedded SW requires specific simulation 

techniques to take advantage of the multi-processing 

capabilities of workstations and to efficiently parallelize 

the simulation. In this paper, the results of the research 

effort towards an efficient, accurate-enough, parallel 

implementation of native simulation is presented. 
Keywords—Native simulation, parallel SW simulation, 

performance analysis, embedded systems. 

I. INTRODUCTION 

owadays, Embedded Systems (ESs) are designed 

and implemented using Multi-Processing, 

Systems-on-Chip (MPSoCs). Verifying the correctness 

of the design on these multiprocessing platforms is a 

complex task. In order to avoid the cost, effort and time 

that direct design verification on a physical prototype 

involves, simulation on a virtual model of the system is 

currently the most popular method used. Moreover, 

detecting design mistakes at the end of the design 

process may imply costly and time-consuming 

redesigns, compromising the final ES cost and time-to-

market. As most of the functionality of the MPSoC is 

carried out in SW running on the different processing 

cores of the chip, efficient, accurate-enough SW 

simulation is becoming increasingly important. 

Several SW simulation technologies at different 

abstraction levels have been proposed, providing 

different trade-off between accuracy and speed. 

Commercial simulation technologies are based on 

instruction set simulators (ISSs) and binary translation. 

However, none of them really provides the required 

trade-off for early evaluation. 

ISSs are usually very accurate but too slow to execute 

the thousands of simulations required to evaluate 

complete SoC design spaces. Simulations based on 

binary translation are commonly faster than ISSs but 

still too slow for design-space exploration. Additionally, 

in both cases, the simulation requires a completely 

developed SW and HW platform including the complete 

SW stack and operating systems in each computing 

node, fully operational peripheral models, libraries, 

device drivers, bus models, etc. Therefore they can only 

be applied once the development process is almost 

finished. Evaluating different allocations in 

heterogeneous platforms, different kinds of processors, 

different operating systems and SW optimizations is 

limited by the refining effort required to simulate all the 

options. Similarly, the evaluation of the effect of reusing 

legacy code in these infrastructures is not an easy task. 

As a consequence, faster and more flexible simulation 

techniques, capable of modeling the effect of all the 

components that impact on system performance are 

required for initial system development and performance 

evaluation. 

Native simulation has proven to be a powerful 

simulation technology for early evaluation of different 

design alternatives. In native simulation, the application 

source code is compiled, the binary analyzed and the 

performance figures back-annotated to the source code 

which is compiled and simulated in the design 

workstation. Nevertheless, as with any Discrete-Event 

simulation technique, native simulation presents 

problems when trying to take advantage of the multi-

processing capabilities of current host workstations 

where the simulation will be executed. Several 

concurrent simulated threads can be run in parallel in the 

host but to ensure deterministic behavior, it is necessary 

to synchronize all of them periodically to maintain 

causality among events. As a consequence, the number 

of cores that can be active during simulation is 

dramatically reduced. 

Embedded SW requires specific simulation techniques 

in order to take advantage of the multi-processing 

capabilities of workstations and to efficiently parallelize 

the simulation. This paper presents the results of the 

research effort towards an efficient, accurate-enough, 

parallel implementation of native simulation. 

II. STATE OF THE ART 

The dominant SW simulation technologies, such as ISSs 

[1-2] or virtualization (e.g. QEMU) [3-4], are based on 

models of the target processors executing the cross-

compiled binary on the host. They require the 

availability of the complete SW stacks to be executed by 
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each processing node including the HW-dependent-SW 

(HdS) and the OS. Although virtualizations achieve 

higher simulation speed than traditional ISS, both are 

associated with large simulation times when providing 

accurate execution times and power consumption 

estimations. As a consequence, reduction of design time 

and effort requires minimizing the number of simulation 

runs at this level of abstraction, thus performing 

architectural mapping decisions at a higher level. 

Nevertheless, virtual platforms based on binary 

simulation are the only method able to provide enough 

accuracy to ensure the functional and non-functional 

correctness of the design. 

As an alternative, source-level models can provide 

enough accuracy with short execution times for design-

space exploration. By instrumenting the code with back-

annotated performance figures from an ISS, the 

accuracy can be increased significantly [7]. Two 

different techniques for timing annotation have been 

proposed. In trace-based simulation, the code is 

analyzed and commands inserted at certain points. A 

trace is a sequence of commands indicating the activity 

of the CPU executing the code. From this activity, the 

execution time and power consumption can be derived. 

As the trace is decoupled from a specific CPU, the 

technique may support different architectural mappings, 

scheduling policies and platform configurations. The 

traces are generated once and re-scheduled depending on 

the changes in design being analyzed such as different 

application mappings or task scheduling policies. When 

an abstract model of the OS is used, additional traces 

have to be considered [7]. Re-scheduling is avoided 

when a deterministic Model of Computation is used [5-

6]. Trace-based simulation has been proposed as an 

alternative to virtualization in order to construct accurate 

virtual platforms for complex, heterogeneous many-core 

systems supporting DSE. Multiple atomic traces per 

basic block that allow an accurate reconstruction of the 

processor's behavior have to be used to achieve this 

goal[8]. Higher accuracy and flexibility in the 

architectural mapping alternatives on a heterogeneous 

platform come at the cost of a more complex analysis of 

a larger number of traces. 

Native simulation technologies have been proposed for 

generating virtual platforms at the beginning of the 

design process, reducing porting efforts [9-12]. The 

methodology is very similar to trace-based simulation as 

an executable model of the system is used; in most 

cases, the complete application SW. The fundamental 

difference compared with trace-based simulation is that 

the code is instrumented directly with back-annotated 

information able to directly provide the estimated 

performance figures of execution times and power 

consumption. In this way, no additional analysis of the 

simulation results (traces) is needed. The performance 

estimation and code annotation can be done directly 

from the source-code or from the ISS after cross-

compilation [10-12]. 

During recent years, there has been a growing interest in 

parallel implementations of host-compiled simulators. 

The synchronization strategy of these simulators can be 

synchronous [13] (if there are global synchronization 

points or clocks) or asynchronous [14]. The latter 

strategy improves simulation performance although the 

implementation is more complex.  Another approach 

used to reduce simulation time is to relax the causality 

property (the cause must be before the effect). A 

conservative simulator guarantees that there are no 

causality errors while the optimistic approach [15] could 

have some errors that force the simulator to recover a 

previous state.  

This paper presents a conservative parallel host-

compiled simulator with an asynchronous 

synchronization strategy. Although other approaches 

synchronize the concurrent threads every time that a 

shared element is read or written, the proposed 

technique only requires synchronization during read 

operations. Additionally, it models the target RTOS and 

the NUMA structure of the target platform. 

III. VIPPE 

In native simulation, the embedded software is 

instrumented with some additional code during 

compilation. This new code provides several estimations 

(e.g. execution time and number of memory accesses) 

during the execution of the instrumented embedded-

software code in the host platform.  

 

 

Fig. 1. Example of code instrumentation for VIPPE. 

 

Instrumented code is executed in the host platform with 

simulation libraries. In this execution, time, and 

consumption estimations are obtained. 

 

Fig. 2. Performance analysis framework. 
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Implementation of the virtual platform allocates every 

target thread to a host thread. Additionally, the target 

RTOS is implemented by an additional thread of the 

host (simulation kernel). For schedule target threads to 

target cores, the target RTOS implementation does not 

need to lock host threads. The threads are only locked 

when a shared variable or synchronization element (for 

example, a semaphore) has to be read (read 

synchronization). This approach minimizes locking and 

improves parallel execution. 

 

 

Fig. 3. Simulator structure. 

 

The target simulated threads are responsible for 

modeling the functionality of the SW and informing the 

kernel thread about their estimations of individual thread 

times, access to memory, etc. With this information the 

kernel thread is responsible for modeling the system. 

This info is shared between the simulation kernel thread 

and the target simulated threads using shared variables.  

The simulation kernel handles the physical simulation 

time or global time (globalSimTime).  

This native simulation methodology has been 

implemented in the VIPPE (VIrtual Parallel platform for 

Performance Analysis) framework, a parallel version of 

the XXX (omitted for blind review) environment. 

IV. VIPPE API 

The VIPPE API consists of an optimal reduced set of 

primitives that allows us to make use of the services 

offered by the kernel. 

These primitives constitute a metamodel that enables the 

implementation of higher level operative system 

interfaces. Therefore, this metamodel can be reused in 

order to implement different APIs such as POSIX, 

arduino, etc. 

 
TABLE I 

SET OF FUNCTIONS THAT FORM THIS API SORTED BY CATEGORIES 

MANAGEMENT OF 

PROCESSES 
MANAGEMENT OF TIMES 

process_create time_real_watch 

time_user_watch  

MANAGEMENT OF 

THREADS 

MANAGEMENT OF 

SEMAPHORES 

get_prio  

set_prio  

get_id  

thread_create   

thread_exit 

semaphore_create 

semaphore_wait 

semaphore_post 

semaphore_watch 

thread_delete 

thread_wait_for_end 

MANAGEMENT OF SIGNALS MANAGEMENT OF 

AFFINITIES 

vippe_signal 

vippe_kill 

uc_PE_mapping  

uc_PE_dismapp  

uc_take_OS_id 

 

Function definitions: 

 

int process_create(int prio): This function creates a 

new process. Receives the priority prio for the new 

process as the argument and returns an execution thread 

identifier. Upon unsuccessful completion, the function 

returns a negative value. 

int get_prio(): This function returns the priority of the 

calling thread. 

int set_prio(int prio): This function sets prio as the 

calling thread priority. 

int get_id(): This function returns the calling thread 

identifier. 

int thread_create(int prio, const pthread_attr_t *attr, 
void *(*start_routine) (void *), void *arg): This 

function creates a new thread with priority prio and 

attributes attr that executes the function start_routine. 

The arguments are passed through the pointer arg. 

int thread_delete(int thread_id): This function finishes 

the execution of the thread with identifier thread_id. 

int thread_wait_for_end(int thread_id): This function 

suspends execution of the calling thread until the thread 

with identifier thread_id finishes its execution. 

int semaphore_create(int init_value): This function 

creates a semaphore with value init_value and returns its 

identifier. 

int semaphore_wait(int sem, long long int time_out): 

This function locks the semaphore with identifier sem 

by performing a semaphore lock operation. 

-If time_out is equal to zero: 

If the semaphore value is zero the 

calling thread will not return from the 

call until it either locks the semaphore 

or the call is interrupted by a signal. 

-Otherwise: 

If the semaphore value is zero the 

calling thread will not return from the 

call until it locks the semaphore, the 

call is interrupted by a signal or the 

amount of time indicated by time_out 

has expired. 

 

int semaphore_post(int sem): This function unlocks 

the semaphore with identifier sem by performing a 

semaphore unlock operation on that semaphore. 

int semaphore_watch(int sem): This function returns 

the value of the semaphore with identifier sem. 

long long int time_real_watch(): This function returns 

the execution time of the system. 

long long int time_user_watch(): This function returns 

the execution time of the user thread. 
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int vippe_signal(int signal_id, void (*function_ptr)()): 
This function establishes the function function_ptr as the 

handler for the signal signal_id. 

int vippe_kill(int signal_id, int thread_id): This 

function sends the signal signal_id to the thread with 

identifier thread_id. 

int uc_PE_mapping(int id_PE): The calling thread is 

migrated to the process element with identifier id_PE. 

int uc_PE_dismapp(): This function unbinds the 

calling thread from any processor previously bound by 

calling the function uc_ PE_mapping. 

int uc_take_OS_id(): This function returns the 

identifier of the OS to which the calling thread belongs. 

This function is necessary for affinity management since 

it must be executed on the processors controlled by the 

OS to which they belong. 

As is shown later, an implementation of POSIX has 

been developed from this API, proving this set to be 

enough. 

This API provides independency between the kernel and 

user program sides. As an advantage, if a windows 

system is to be simulated, it is not necessary to modify 

the simulator kernel: but only to implement a WinAPI 

from VIPPE API functions in the same way it has been 

done for POSIX. 

On the other hand, if the simulator is to be executed on a 

different native OS (i.e. windows), it is possible to reuse 

the POSIX API, it being necessary only to implement 

the kernel simulator for that specific OS. 

V. POSIX API 

POSIX has been chosen as the operative system 

interface API, since it is one of the most widely used. 

Our set of POSIX API functions has been divided into 

the categories of events, concurrency, synchronization, 

timing and I/O, depending on the service they provide. 

Events: Signals and interruptions related functions. 

Concurrency: Execution thread management. Process 

and thread creation, cancellation, etc. 

Synchronization: Inter-process/thread synchronization. 

Semaphores, mutex, etc. 

Timing: Obtaining time related functions. 

I/O: Involves data input/output functions, for example 

writing/reading files. 

 
TABLA II 

BASIC VIPPE API FUNCTIONS INVOLVED IN IMPLEMENTATION  

Events 

   

vippe_signal 

vippe_kill 

Concurrency 

   

process_create  

thread_create  

thread_delete  

thread_wait_for_end 

get_id  

get_prio  

set_prio 

Synchronization 

   

semaphore_create  

semaphore_wait  

semaphore_post  

semaphore_watch 

Timing 

   

time_real_watch 

time_user_watch 

I/O 

   

semaphore_wait  

semaphore_post 

 

The previous table shows the basic VIPPE API 

functions involved in the implementation of the 

functions of each category, however, there are no rigid 

boundaries among the different categories, it being 

necessary for some POSIX functions to use additional 

VIPPE API functions not included in the category. An 

example is the implementation of the POSIX function 

sem_timedwait() that makes use of time_real_watch() 

for time calculations in addition to semaphore_wait(). 

The POSIX API implementation only makes use of the 

elements of synchronization provided by the VIPPE API 

which means that accesses to POSIX’s own critical 

section data (such as, for example, POSIX’s internal list 

of current threads) is controlled by these elements, not 

by the native operative system. 

Using native OS synchronization methods would lead to 

invalid simulation time values, since waiting times 

resulting from semaphore blocks would not be added to 

the simulation time. 

VIPPE API simplifies POSIX portability to a new target 

platform by implementing the reduce set of VIPPE API 

functions in assembly code. 

For example, if there is a new platform available, but 

there is still no OS ported for that platform (e.g. Linux), 

the assembly implementation of VIPPE API (that 

requires less effort and cost than implementing Linux), 

allows the user program to be executed since the POSIX 

API implementation  is based on the VIPPE API. 

Not all POSIX functions need to be implemented 

making use of the VIPPE API.  

Functions that do not require synchronizations that may 

generate blocks, making use of signals, obtaining time 

information or providing execution thread management 

do not need to be implemented making use of VIPPE 

API provided that these functions do not directly modify 

or use elements created from VIPPE API functions. 

For example, function pthread_sigmask(int how, const 

sigset_t *set, sigset_t *oset) changes the signal mask of 

the current thread and needs to be implemented. 

However, function sigempyset(sigset_t *set) that 

initializes the signal set pointed to by set does not need 

to be implemented.  

A. POSIX API annotation 

 

In order to obtain accurate simulated time values, times 

added by POSIX must be taken into account. 

Three different approaches are proposed in order to 

obtain these values: 

 

1. Fixed execution time as a parameter of the function. 

An execution time is estimated for each function. This 

value is passed as an argument to the overloaded 

function as follows: 
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Therefore every simulated execution time of the same 

function takes exactly the same time (except for time 

increments due to possible blocks). 

 

2. Annotating each possible path inside the function, so 

simulated execution time of the function will depend on 

the path taken through the function. 

 

 

Fig. 4. Annotation for each possible execution path. 

 

This approach is more accurate than the previous one 

since functions do not always execute in the same way, 

resulting in different execution times. 

 

3. Parsing the POSIX API code. 

By this method the functions comprising the POSIX API 

are parsed in the same way used for the user program. 

Results in simulation execution times are similar to the 

previous approach but this also has an extra advantage. 

Using this method it is unnecessary to include the 

functions for simulation time increments inside the 

POSIX functions, this allows us to execute the user 

program using POSIX on a platform with an available 

VIPPE API implementation as explained previously. 

Since the second and third methods provide more 

accurate results and the third one provides advantages 

compared to the second one, parsing the POSIX API 

code is chosen as the annotation method. 

 

While high precision is achieved for user program 

simulation times, obtaining errors around 10%, less 

accurate results are obtained for POSIX function 

simulation times. This is due to the fact that the function 

execution times depend on POSIX implementation, 

which varies according to the OS implementation on the 

real platform, whereas simulation times are given by our 

POSIX implementation. 

However, OS weight is expected to be small in 

comparison to the total execution time, making this error 

less significant. 

 

VI. EXPERIMENTAL RESULTS 

The VIPPE framework includes the VIPPE API 

implementation, and the proposed implementation in 

this paper of POSIX API uses VIPPE API. This enables 

the embedded application to be executed without code 

manipulation. 

The performance of the proposed methodology has been 

evaluated with the PARSEC (Princeton Application 

Repository for Shared-Memory Computers) benchmark 

suite [17]. PARSEC integrates several multithreaded 

programs in which the user can define the number of 

threads that the application uses. This is very useful for 

evaluating the relation between number of target threads 

and parallel simulation performance.  

The evaluation is focused on the execution time of the 

host-compiled parallel simulation. There is no 

information about the accuracy of the proposed 

simulation because this parameter mainly depends on 

the source-code timing annotations and they are 

independent of the native simulation methodology (the 

paper’s main objective).  

The benchmark and the original code have been 

executed in a host with 8 Intel Xeon E5-2687W at 

3.10GHz. Every processor has 8 cores, thus the host 

platform integrates 64 cores with SMP capability. The 

computer has 64Gb of RAM and 20Mb of cache. 

Figure 5 analyzes the relationship between the speed-up 

and the number of target threads. The number of cores 

of the target platform has been limited to 4. The host 

platform uses 32 cores. Although the native simulation 

requires more host time than the original benchmark, the 

speed-up is similar. The original (native) sequential code 

is 64.7 times faster than the host-compiled simulation 

but the maximum difference between the two speed-ups 

is about 15%. This demonstrates the limited impact of 

the proposed methodology and the advantages of 

allocating target threads to host threads (the simulation 

has a similar speed-up to the original description when 

the number of target threads is modified). 

 

Fig. 5. Speed-up with the number of target threads 

Fig 6 analyzes the relationship between the execution 

time and the number of cores in the target platform. This 

figure demonstrates that performance improvement in 

simulation execution time is independent (or at most 

weakly dependent) on the number of processors in the 

target platform and only on the number of host 

processors and application threads. The measurements 

shown in figure 6 have been obtained executing a x264 

example of the PARSEC benchmark suite (H.264 video 

encoding) with 4 concurrent threads and 1920x1080 

with 25fps input video. 
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Fig. 6. Time vs number of cores in the target platform 

 

Fig 7 analyzes the relationship between the execution 

time and the number of cores in the host computer and 

the number of threads in the simulated application.  

 

Fig. 7 Execution time vs number of cores in the host 

computer vs number of threads in the simulated 

application 

 

When the number of threads is higher than the number 

of host processors, the time penalty due to thread 

creation, scheduling time (i.e. context switching), etc. 

increases execution time. This behavior is highlighted in 

figure 7 with one host core (with two threads, execution 

time is higher than with one, and with three higher than 

with two etc.). 

When the number threads is equal to or lower than the 

number of host processors, it can be seen that the 

execution time of the simulation is reduced 

proportionally to the number of threads in the 

application. 

VII. CONCLUSIONS 

In this paper the architecture of an efficient, parallel, 

native simulation tool has been described. The tool 

supports the simulation of application SW running on 

any multi-processing platform providing an OS API on 

an abstract model of the RTOS and the processing HW. 

An optimized, general-purpose API has been developed. 

Although simple, it has proven to support more complex 

OS services such as POSIX. Experimental results show 

the advantages provided by the tool in simulating the 

application SW on multi-core workstations. 

ACKNOWLEDGMENT 

This work has been financed by the Mineco through the 

TEC2011-28666-C04-02 project and CA112 HARP 

project; the Spanish MITyC and the EU through the 

Artemis 332913 CopCams project and Artemis 295371 

CRAFTERS project. 

REFERENCES 

[1] L. Benini, et al: "MPARM: Exploring the Multi-Processor 

SoC Design Space with SystemC", Journal of Signal Processing 
Systems, 2005.  

[2] D. Yun, S. Kim; "A Parallel Simulation Technique for 

Multicore Embedded Systems and its Performance Analysis", IEEE 
Trans. on Computer-Aided Design of Integrated Circuit and Systems. 

Vol 31, No 1, Jan 2012. 

[3] M.-C. Chiang, T.-C. Yeh and G.-F. Tseng: "A QEMU and 

SystemC-Based Cycle-Accurate ISS for Performance Estimation on 

SoC Development", IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, V.30, N.4, April 2011.  

[4] Y. Jung, J. Park, M. Petracca, L. Carloni; "netShip: A 

Networked Virtual Platform for Large-Scale Heterogeneous 

Distributed Embedded Systems". Proc. of Design Automation 
Conference, 2013. 

[5] M. Streubühr, R. Rosales, R. Hasholzner, C. Haubelt and J. 

Teich: "ESL Power and Performance Estimation for heterogeneous 
MPSoCs using SystemC", FDL Conference, 2011. 

[6] A.D. Pimentel: "The Artemis workbench for system-level 

performance evaluation of embedded systems", Int. J. Embedded 
Systems, V.3, N.3, 2008. 

[7] R. Plyaskin, A. Masrur, M. Geier, S. Chakraborty and A. 

Herkersdorf: "High-level timing analysis of concurrent applications on 

MPSoC platforms using memory-aware trace-driven simulations", Int. 

Conference on VLSI and System-on-Chip, IEEE, 2010. 

[8] R. Leupers, G. Martin, R. Plyaskin, A. Herkersdorf, F. 

Schirrmeister, T. Kogel and M. Vaupel: "Virtual Platforms: Breaking 

new grounds", DATE Conference, 2012. 

[9] J. Schnerr, O. Bringmann, A. Viehl, W. Rosenstiel: "High-
performance timing simulation of embedded software". DAC 

conference, 2008. 

[10] H.Shen, M-M. Hamayun and F. Pétrot: "Native Simulation 
of MPSoC using Hardware-Assisted Virtualization", IEEE Trans. on 

Computer-Aided design of Integrated Circuits and Systems, V.31, N.7, 

July, 2012. 
[11] H. Posadas, S. Real, E. Villar: "M3-SCoPE: Performance 

Modeling of Multi-Processor Embedded Systems for Fast Design 
Space Exploration", in C. Silvano, W. Fornaciari & E. Villar (Eds.): 

"Multi-objective Design Space Exploration of Multiprocessor SoC 

Architectures: the MULTICUBE Approach", Springer, 2011. 
[12] S. Chakravarty, Z. Zhao and A. Gerstlauer: "Automated, 

retargetable back-annotation for host compiled performance and power 

modeling", proc. Of 2013 International Conference on 

Hardware/Software Codesign and System Synthesis (CODES+ISSS), 

ACM, 2013.  

[13] S. Roloff, F. Hannig, J. Teich; "Approximate Time 

Functional Simulation of Resource-Aware Programming Concepts for 

Heterogeneous MPSoCs". Proc. of Asian and South Pacific Design 

Automation Conference. ASP-DAC'12. 2012. 
[14] C. Roth et all; "Asynchronous Parallel MPSoC Simulation 

on the Single-chip Cloud Computer". IEEE Int. Symp. on System on 

Chip (SoC). 2012. 
[15] S. Jafer, Q. Liu, G. Wainer; "Synchronization methods in 

parallel and distributed discrete-event simulation", Simulation 

Modeling Practice and Theory, 30 (2013).  
[16] www.llvm.org 

[17] http://parsec.cs.princeton.edu 

 

 

 

 


