

���������	���

������������������ 	���!�"�	#��

��� ����$�������������������������������������

%&'()�����*�)+,-)�,-�)�

%&'()�.���,-*)*�)+,-)�,-�)+

��		���	��$�����

V Jornadas de Computación Empotrada, Valladolid, 17-19 de septiembre de 2014

20

Abstract—Verifying the correctness of multi-processing

embedded systems is a complex task. In order to avoid the

cost, effort and time that the direct design verification on a

physical prototype implies, simulation on a virtual model

of the system is the most popular method used currently.

Commercially available simulators require the complete

SW binaries to be executed on each processing node.

Although they can provide very accurate results, they can

only be applied once the SW development has been

completed. Native simulation technologies have been

proposed to generate virtual platforms at the beginning of

the design process, reducing porting efforts. As with any

Discrete-Event simulation technique, native simulation

presents problems in order to take advantage of the multi-

processing capabilities of current host workstations where

the simulation will be executed. Several concurrent

simulated threads can be run in parallel in the host but to

ensure deterministic behavior, it is necessary to

synchronize all of them periodically in order to maintain

causality among events. As a consequence, the number of

cores that can be active during simulation is dramatically

reduced. Embedded SW requires specific simulation

techniques to take advantage of the multi-processing

capabilities of workstations and to efficiently parallelize

the simulation. In this paper, the results of the research

effort towards an efficient, accurate-enough, parallel

implementation of native simulation is presented.
Keywords—Native simulation, parallel SW simulation,

performance analysis, embedded systems.

I. INTRODUCTION

owadays, Embedded Systems (ESs) are designed

and implemented using Multi-Processing,

Systems-on-Chip (MPSoCs). Verifying the correctness

of the design on these multiprocessing platforms is a

complex task. In order to avoid the cost, effort and time

that direct design verification on a physical prototype

involves, simulation on a virtual model of the system is

currently the most popular method used. Moreover,

detecting design mistakes at the end of the design

process may imply costly and time-consuming

redesigns, compromising the final ES cost and time-to-

market. As most of the functionality of the MPSoC is

carried out in SW running on the different processing

cores of the chip, efficient, accurate-enough SW

simulation is becoming increasingly important.

Several SW simulation technologies at different

abstraction levels have been proposed, providing

different trade-off between accuracy and speed.

Commercial simulation technologies are based on

instruction set simulators (ISSs) and binary translation.

However, none of them really provides the required

trade-off for early evaluation.

ISSs are usually very accurate but too slow to execute

the thousands of simulations required to evaluate

complete SoC design spaces. Simulations based on

binary translation are commonly faster than ISSs but

still too slow for design-space exploration. Additionally,

in both cases, the simulation requires a completely

developed SW and HW platform including the complete

SW stack and operating systems in each computing

node, fully operational peripheral models, libraries,

device drivers, bus models, etc. Therefore they can only

be applied once the development process is almost

finished. Evaluating different allocations in

heterogeneous platforms, different kinds of processors,

different operating systems and SW optimizations is

limited by the refining effort required to simulate all the

options. Similarly, the evaluation of the effect of reusing

legacy code in these infrastructures is not an easy task.

As a consequence, faster and more flexible simulation

techniques, capable of modeling the effect of all the

components that impact on system performance are

required for initial system development and performance

evaluation.

Native simulation has proven to be a powerful

simulation technology for early evaluation of different

design alternatives. In native simulation, the application

source code is compiled, the binary analyzed and the

performance figures back-annotated to the source code

which is compiled and simulated in the design

workstation. Nevertheless, as with any Discrete-Event

simulation technique, native simulation presents

problems when trying to take advantage of the multi-

processing capabilities of current host workstations

where the simulation will be executed. Several

concurrent simulated threads can be run in parallel in the

host but to ensure deterministic behavior, it is necessary

to synchronize all of them periodically to maintain

causality among events. As a consequence, the number

of cores that can be active during simulation is

dramatically reduced.

Embedded SW requires specific simulation techniques

in order to take advantage of the multi-processing

capabilities of workstations and to efficiently parallelize

the simulation. This paper presents the results of the

research effort towards an efficient, accurate-enough,

parallel implementation of native simulation.

II. STATE OF THE ART

The dominant SW simulation technologies, such as ISSs

[1-2] or virtualization (e.g. QEMU) [3-4], are based on

models of the target processors executing the cross-

compiled binary on the host. They require the

availability of the complete SW stacks to be executed by

N

VIPPE: Native simulation and performance analysis

framework for multi-processing embedded systems
L. Diaz, E. Gonzalez, E. Villar, P. Sanchez

University of Cantabria

ETSIIT, Av. Los Castros s/n, 39005 Santander, Spain

V Jornadas de Computación Empotrada, Valladolid, 17-19 de septiembre de 2014

21

each processing node including the HW-dependent-SW

(HdS) and the OS. Although virtualizations achieve

higher simulation speed than traditional ISS, both are

associated with large simulation times when providing

accurate execution times and power consumption

estimations. As a consequence, reduction of design time

and effort requires minimizing the number of simulation

runs at this level of abstraction, thus performing

architectural mapping decisions at a higher level.

Nevertheless, virtual platforms based on binary

simulation are the only method able to provide enough

accuracy to ensure the functional and non-functional

correctness of the design.

As an alternative, source-level models can provide

enough accuracy with short execution times for design-

space exploration. By instrumenting the code with back-

annotated performance figures from an ISS, the

accuracy can be increased significantly [7]. Two

different techniques for timing annotation have been

proposed. In trace-based simulation, the code is

analyzed and commands inserted at certain points. A

trace is a sequence of commands indicating the activity

of the CPU executing the code. From this activity, the

execution time and power consumption can be derived.

As the trace is decoupled from a specific CPU, the

technique may support different architectural mappings,

scheduling policies and platform configurations. The

traces are generated once and re-scheduled depending on

the changes in design being analyzed such as different

application mappings or task scheduling policies. When

an abstract model of the OS is used, additional traces

have to be considered [7]. Re-scheduling is avoided

when a deterministic Model of Computation is used [5-

6]. Trace-based simulation has been proposed as an

alternative to virtualization in order to construct accurate

virtual platforms for complex, heterogeneous many-core

systems supporting DSE. Multiple atomic traces per

basic block that allow an accurate reconstruction of the

processor's behavior have to be used to achieve this

goal[8]. Higher accuracy and flexibility in the

architectural mapping alternatives on a heterogeneous

platform come at the cost of a more complex analysis of

a larger number of traces.

Native simulation technologies have been proposed for

generating virtual platforms at the beginning of the

design process, reducing porting efforts [9-12]. The

methodology is very similar to trace-based simulation as

an executable model of the system is used; in most

cases, the complete application SW. The fundamental

difference compared with trace-based simulation is that

the code is instrumented directly with back-annotated

information able to directly provide the estimated

performance figures of execution times and power

consumption. In this way, no additional analysis of the

simulation results (traces) is needed. The performance

estimation and code annotation can be done directly

from the source-code or from the ISS after cross-

compilation [10-12].

During recent years, there has been a growing interest in

parallel implementations of host-compiled simulators.

The synchronization strategy of these simulators can be

synchronous [13] (if there are global synchronization

points or clocks) or asynchronous [14]. The latter

strategy improves simulation performance although the

implementation is more complex. Another approach

used to reduce simulation time is to relax the causality

property (the cause must be before the effect). A

conservative simulator guarantees that there are no

causality errors while the optimistic approach [15] could

have some errors that force the simulator to recover a

previous state.

This paper presents a conservative parallel host-

compiled simulator with an asynchronous

synchronization strategy. Although other approaches

synchronize the concurrent threads every time that a

shared element is read or written, the proposed

technique only requires synchronization during read

operations. Additionally, it models the target RTOS and

the NUMA structure of the target platform.

III. VIPPE

In native simulation, the embedded software is

instrumented with some additional code during

compilation. This new code provides several estimations

(e.g. execution time and number of memory accesses)

during the execution of the instrumented embedded-

software code in the host platform.

Fig. 1. Example of code instrumentation for VIPPE.

Instrumented code is executed in the host platform with

simulation libraries. In this execution, time, and

consumption estimations are obtained.

Fig. 2. Performance analysis framework.

V Jornadas de Computación Empotrada, Valladolid, 17-19 de septiembre de 2014

22

Implementation of the virtual platform allocates every

target thread to a host thread. Additionally, the target

RTOS is implemented by an additional thread of the

host (simulation kernel). For schedule target threads to

target cores, the target RTOS implementation does not

need to lock host threads. The threads are only locked

when a shared variable or synchronization element (for

example, a semaphore) has to be read (read

synchronization). This approach minimizes locking and

improves parallel execution.

Fig. 3. Simulator structure.

The target simulated threads are responsible for

modeling the functionality of the SW and informing the

kernel thread about their estimations of individual thread

times, access to memory, etc. With this information the

kernel thread is responsible for modeling the system.

This info is shared between the simulation kernel thread

and the target simulated threads using shared variables.

The simulation kernel handles the physical simulation

time or global time (globalSimTime).

This native simulation methodology has been

implemented in the VIPPE (VIrtual Parallel platform for

Performance Analysis) framework, a parallel version of

the XXX (omitted for blind review) environment.

IV. VIPPE API

The VIPPE API consists of an optimal reduced set of

primitives that allows us to make use of the services

offered by the kernel.

These primitives constitute a metamodel that enables the

implementation of higher level operative system

interfaces. Therefore, this metamodel can be reused in

order to implement different APIs such as POSIX,

arduino, etc.

TABLE I

SET OF FUNCTIONS THAT FORM THIS API SORTED BY CATEGORIES

MANAGEMENT OF

PROCESSES
MANAGEMENT OF TIMES

process_create time_real_watch

time_user_watch

MANAGEMENT OF

THREADS

MANAGEMENT OF

SEMAPHORES

get_prio

set_prio

get_id

thread_create

thread_exit

semaphore_create

semaphore_wait

semaphore_post

semaphore_watch

thread_delete

thread_wait_for_end

MANAGEMENT OF SIGNALS MANAGEMENT OF

AFFINITIES

vippe_signal

vippe_kill

uc_PE_mapping

uc_PE_dismapp

uc_take_OS_id

Function definitions:

int process_create(int prio): This function creates a

new process. Receives the priority prio for the new

process as the argument and returns an execution thread

identifier. Upon unsuccessful completion, the function

returns a negative value.

int get_prio(): This function returns the priority of the

calling thread.

int set_prio(int prio): This function sets prio as the

calling thread priority.

int get_id(): This function returns the calling thread

identifier.

int thread_create(int prio, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg): This

function creates a new thread with priority prio and

attributes attr that executes the function start_routine.

The arguments are passed through the pointer arg.

int thread_delete(int thread_id): This function finishes

the execution of the thread with identifier thread_id.

int thread_wait_for_end(int thread_id): This function

suspends execution of the calling thread until the thread

with identifier thread_id finishes its execution.

int semaphore_create(int init_value): This function

creates a semaphore with value init_value and returns its

identifier.

int semaphore_wait(int sem, long long int time_out):

This function locks the semaphore with identifier sem

by performing a semaphore lock operation.

-If time_out is equal to zero:

If the semaphore value is zero the

calling thread will not return from the

call until it either locks the semaphore

or the call is interrupted by a signal.

-Otherwise:

If the semaphore value is zero the

calling thread will not return from the

call until it locks the semaphore, the

call is interrupted by a signal or the

amount of time indicated by time_out

has expired.

int semaphore_post(int sem): This function unlocks

the semaphore with identifier sem by performing a

semaphore unlock operation on that semaphore.

int semaphore_watch(int sem): This function returns

the value of the semaphore with identifier sem.

long long int time_real_watch(): This function returns

the execution time of the system.

long long int time_user_watch(): This function returns

the execution time of the user thread.

V Jornadas de Computación Empotrada, Valladolid, 17-19 de septiembre de 2014

23

int vippe_signal(int signal_id, void (*function_ptr)()):
This function establishes the function function_ptr as the

handler for the signal signal_id.

int vippe_kill(int signal_id, int thread_id): This

function sends the signal signal_id to the thread with

identifier thread_id.

int uc_PE_mapping(int id_PE): The calling thread is

migrated to the process element with identifier id_PE.

int uc_PE_dismapp(): This function unbinds the

calling thread from any processor previously bound by

calling the function uc_ PE_mapping.

int uc_take_OS_id(): This function returns the

identifier of the OS to which the calling thread belongs.

This function is necessary for affinity management since

it must be executed on the processors controlled by the

OS to which they belong.

As is shown later, an implementation of POSIX has

been developed from this API, proving this set to be

enough.

This API provides independency between the kernel and

user program sides. As an advantage, if a windows

system is to be simulated, it is not necessary to modify

the simulator kernel: but only to implement a WinAPI

from VIPPE API functions in the same way it has been

done for POSIX.

On the other hand, if the simulator is to be executed on a

different native OS (i.e. windows), it is possible to reuse

the POSIX API, it being necessary only to implement

the kernel simulator for that specific OS.

V. POSIX API

POSIX has been chosen as the operative system

interface API, since it is one of the most widely used.

Our set of POSIX API functions has been divided into

the categories of events, concurrency, synchronization,

timing and I/O, depending on the service they provide.

Events: Signals and interruptions related functions.

Concurrency: Execution thread management. Process

and thread creation, cancellation, etc.

Synchronization: Inter-process/thread synchronization.

Semaphores, mutex, etc.

Timing: Obtaining time related functions.

I/O: Involves data input/output functions, for example

writing/reading files.

TABLA II

BASIC VIPPE API FUNCTIONS INVOLVED IN IMPLEMENTATION

Events

vippe_signal

vippe_kill

Concurrency

process_create

thread_create

thread_delete

thread_wait_for_end

get_id

get_prio

set_prio

Synchronization

semaphore_create

semaphore_wait

semaphore_post

semaphore_watch

Timing

time_real_watch

time_user_watch

I/O

semaphore_wait

semaphore_post

The previous table shows the basic VIPPE API

functions involved in the implementation of the

functions of each category, however, there are no rigid

boundaries among the different categories, it being

necessary for some POSIX functions to use additional

VIPPE API functions not included in the category. An

example is the implementation of the POSIX function

sem_timedwait() that makes use of time_real_watch()

for time calculations in addition to semaphore_wait().

The POSIX API implementation only makes use of the

elements of synchronization provided by the VIPPE API

which means that accesses to POSIX’s own critical

section data (such as, for example, POSIX’s internal list

of current threads) is controlled by these elements, not

by the native operative system.

Using native OS synchronization methods would lead to

invalid simulation time values, since waiting times

resulting from semaphore blocks would not be added to

the simulation time.

VIPPE API simplifies POSIX portability to a new target

platform by implementing the reduce set of VIPPE API

functions in assembly code.

For example, if there is a new platform available, but

there is still no OS ported for that platform (e.g. Linux),

the assembly implementation of VIPPE API (that

requires less effort and cost than implementing Linux),

allows the user program to be executed since the POSIX

API implementation is based on the VIPPE API.

Not all POSIX functions need to be implemented

making use of the VIPPE API.

Functions that do not require synchronizations that may

generate blocks, making use of signals, obtaining time

information or providing execution thread management

do not need to be implemented making use of VIPPE

API provided that these functions do not directly modify

or use elements created from VIPPE API functions.

For example, function pthread_sigmask(int how, const

sigset_t *set, sigset_t *oset) changes the signal mask of

the current thread and needs to be implemented.

However, function sigempyset(sigset_t *set) that

initializes the signal set pointed to by set does not need

to be implemented.

A. POSIX API annotation

In order to obtain accurate simulated time values, times

added by POSIX must be taken into account.

Three different approaches are proposed in order to

obtain these values:

1. Fixed execution time as a parameter of the function.

An execution time is estimated for each function. This

value is passed as an argument to the overloaded

function as follows:

V Jornadas de Computación Empotrada, Valladolid, 17-19 de septiembre de 2014

24

Therefore every simulated execution time of the same

function takes exactly the same time (except for time

increments due to possible blocks).

2. Annotating each possible path inside the function, so

simulated execution time of the function will depend on

the path taken through the function.

Fig. 4. Annotation for each possible execution path.

This approach is more accurate than the previous one

since functions do not always execute in the same way,

resulting in different execution times.

3. Parsing the POSIX API code.

By this method the functions comprising the POSIX API

are parsed in the same way used for the user program.

Results in simulation execution times are similar to the

previous approach but this also has an extra advantage.

Using this method it is unnecessary to include the

functions for simulation time increments inside the

POSIX functions, this allows us to execute the user

program using POSIX on a platform with an available

VIPPE API implementation as explained previously.

Since the second and third methods provide more

accurate results and the third one provides advantages

compared to the second one, parsing the POSIX API

code is chosen as the annotation method.

While high precision is achieved for user program

simulation times, obtaining errors around 10%, less

accurate results are obtained for POSIX function

simulation times. This is due to the fact that the function

execution times depend on POSIX implementation,

which varies according to the OS implementation on the

real platform, whereas simulation times are given by our

POSIX implementation.

However, OS weight is expected to be small in

comparison to the total execution time, making this error

less significant.

VI. EXPERIMENTAL RESULTS

The VIPPE framework includes the VIPPE API

implementation, and the proposed implementation in

this paper of POSIX API uses VIPPE API. This enables

the embedded application to be executed without code

manipulation.

The performance of the proposed methodology has been

evaluated with the PARSEC (Princeton Application

Repository for Shared-Memory Computers) benchmark

suite [17]. PARSEC integrates several multithreaded

programs in which the user can define the number of

threads that the application uses. This is very useful for

evaluating the relation between number of target threads

and parallel simulation performance.

The evaluation is focused on the execution time of the

host-compiled parallel simulation. There is no

information about the accuracy of the proposed

simulation because this parameter mainly depends on

the source-code timing annotations and they are

independent of the native simulation methodology (the

paper’s main objective).

The benchmark and the original code have been

executed in a host with 8 Intel Xeon E5-2687W at

3.10GHz. Every processor has 8 cores, thus the host

platform integrates 64 cores with SMP capability. The

computer has 64Gb of RAM and 20Mb of cache.

Figure 5 analyzes the relationship between the speed-up

and the number of target threads. The number of cores

of the target platform has been limited to 4. The host

platform uses 32 cores. Although the native simulation

requires more host time than the original benchmark, the

speed-up is similar. The original (native) sequential code

is 64.7 times faster than the host-compiled simulation

but the maximum difference between the two speed-ups

is about 15%. This demonstrates the limited impact of

the proposed methodology and the advantages of

allocating target threads to host threads (the simulation

has a similar speed-up to the original description when

the number of target threads is modified).

Fig. 5. Speed-up with the number of target threads

Fig 6 analyzes the relationship between the execution

time and the number of cores in the target platform. This

figure demonstrates that performance improvement in

simulation execution time is independent (or at most

weakly dependent) on the number of processors in the

target platform and only on the number of host

processors and application threads. The measurements

shown in figure 6 have been obtained executing a x264

example of the PARSEC benchmark suite (H.264 video

encoding) with 4 concurrent threads and 1920x1080

with 25fps input video.

V Jornadas de Computación Empotrada, Valladolid, 17-19 de septiembre de 2014

25

Fig. 6. Time vs number of cores in the target platform

Fig 7 analyzes the relationship between the execution

time and the number of cores in the host computer and

the number of threads in the simulated application.

Fig. 7 Execution time vs number of cores in the host

computer vs number of threads in the simulated

application

When the number of threads is higher than the number

of host processors, the time penalty due to thread

creation, scheduling time (i.e. context switching), etc.

increases execution time. This behavior is highlighted in

figure 7 with one host core (with two threads, execution

time is higher than with one, and with three higher than

with two etc.).

When the number threads is equal to or lower than the

number of host processors, it can be seen that the

execution time of the simulation is reduced

proportionally to the number of threads in the

application.

VII. CONCLUSIONS

In this paper the architecture of an efficient, parallel,

native simulation tool has been described. The tool

supports the simulation of application SW running on

any multi-processing platform providing an OS API on

an abstract model of the RTOS and the processing HW.

An optimized, general-purpose API has been developed.

Although simple, it has proven to support more complex

OS services such as POSIX. Experimental results show

the advantages provided by the tool in simulating the

application SW on multi-core workstations.

ACKNOWLEDGMENT

This work has been financed by the Mineco through the

TEC2011-28666-C04-02 project and CA112 HARP

project; the Spanish MITyC and the EU through the

Artemis 332913 CopCams project and Artemis 295371

CRAFTERS project.

REFERENCES

[1] L. Benini, et al: "MPARM: Exploring the Multi-Processor

SoC Design Space with SystemC", Journal of Signal Processing
Systems, 2005.

[2] D. Yun, S. Kim; "A Parallel Simulation Technique for

Multicore Embedded Systems and its Performance Analysis", IEEE
Trans. on Computer-Aided Design of Integrated Circuit and Systems.

Vol 31, No 1, Jan 2012.

[3] M.-C. Chiang, T.-C. Yeh and G.-F. Tseng: "A QEMU and

SystemC-Based Cycle-Accurate ISS for Performance Estimation on

SoC Development", IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, V.30, N.4, April 2011.

[4] Y. Jung, J. Park, M. Petracca, L. Carloni; "netShip: A

Networked Virtual Platform for Large-Scale Heterogeneous

Distributed Embedded Systems". Proc. of Design Automation
Conference, 2013.

[5] M. Streubühr, R. Rosales, R. Hasholzner, C. Haubelt and J.

Teich: "ESL Power and Performance Estimation for heterogeneous
MPSoCs using SystemC", FDL Conference, 2011.

[6] A.D. Pimentel: "The Artemis workbench for system-level

performance evaluation of embedded systems", Int. J. Embedded
Systems, V.3, N.3, 2008.

[7] R. Plyaskin, A. Masrur, M. Geier, S. Chakraborty and A.

Herkersdorf: "High-level timing analysis of concurrent applications on

MPSoC platforms using memory-aware trace-driven simulations", Int.

Conference on VLSI and System-on-Chip, IEEE, 2010.

[8] R. Leupers, G. Martin, R. Plyaskin, A. Herkersdorf, F.

Schirrmeister, T. Kogel and M. Vaupel: "Virtual Platforms: Breaking

new grounds", DATE Conference, 2012.

[9] J. Schnerr, O. Bringmann, A. Viehl, W. Rosenstiel: "High-
performance timing simulation of embedded software". DAC

conference, 2008.

[10] H.Shen, M-M. Hamayun and F. Pétrot: "Native Simulation
of MPSoC using Hardware-Assisted Virtualization", IEEE Trans. on

Computer-Aided design of Integrated Circuits and Systems, V.31, N.7,

July, 2012.
[11] H. Posadas, S. Real, E. Villar: "M3-SCoPE: Performance

Modeling of Multi-Processor Embedded Systems for Fast Design
Space Exploration", in C. Silvano, W. Fornaciari & E. Villar (Eds.):

"Multi-objective Design Space Exploration of Multiprocessor SoC

Architectures: the MULTICUBE Approach", Springer, 2011.
[12] S. Chakravarty, Z. Zhao and A. Gerstlauer: "Automated,

retargetable back-annotation for host compiled performance and power

modeling", proc. Of 2013 International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS),

ACM, 2013.

[13] S. Roloff, F. Hannig, J. Teich; "Approximate Time

Functional Simulation of Resource-Aware Programming Concepts for

Heterogeneous MPSoCs". Proc. of Asian and South Pacific Design

Automation Conference. ASP-DAC'12. 2012.
[14] C. Roth et all; "Asynchronous Parallel MPSoC Simulation

on the Single-chip Cloud Computer". IEEE Int. Symp. on System on

Chip (SoC). 2012.
[15] S. Jafer, Q. Liu, G. Wainer; "Synchronization methods in

parallel and distributed discrete-event simulation", Simulation

Modeling Practice and Theory, 30 (2013).
[16] www.llvm.org

[17] http://parsec.cs.princeton.edu

