
Efficient Implementation of Pattern Matching

Recognition in Heterogeneus Architectures

Javier Gonzalez-Bayon, Pablo Sanchez, Javier Barreda

University of Cantabria, TEISA department

Avda de los Castros, s/n, Santander

Spain

{javiergb, sanchez, barreda}@teisa.unican.es

Abstract—Implementation of pattern recognition algorithms

is an important and complex task. These schemes usually

perform time and resource consuming operations as 2D FFT.

That is the reason why usually they are implemented in

heterogeneous platforms with at least one DSP that accelerates

the mathematical applications. Nevertheless, even using this

specific processor the execution time required can be excessive.

Therefore, an efficient use of all the processors available in the

platform is mandatory. This paper proposes an efficient

implementation of pattern recognition schemes in a

heterogeneous platform that includes an ARM processor and a

DSP.

Keywords—embedded implementation; heterogeneous

architecture; pattern matching recognition

I. INTRODUCTION

The recognition of an object independent of its position,
size and orientation is an important task in pattern recognition.
In the last two decades a number of techniques have been
developed to extract image features which are invariant under
translation, scale change and rotation caused by the image
formation process. A good recognition scheme is desired to be
discriminative, robust, and computationally inexpensive in both
terms of time and storage requirement.

It is usual that these recognition algorithms have to be
implemented in handheld devices with battery limitations.
Thus, it is important that their implementation avoids excessive
computations or power consumption. And it is usually complex
to translate the mathematical functions of these algorithms to
the target architecture. The complexity arises for heterogeneous
platforms where more than one processor is available. This
paper focuses in an architecture that is composed of an ARM
processor and a DSP. To obtain the maximum performance for
this platform is necessary to use adequately the resources
available. For example, boards that include DSP have a
specific library for performing specific mathematical
operations. Thus, it is necessary to comprehend it.

The pattern recognition application implemented in this
work consists in the recognition of the position of several
clocks of a picture. An image example can be observed in Fig.
1. There are six different clocks to measure. For a visual
recognition application like this one, usually the FFT (Fast
Fourier Transform) is the more important and used function.

How to perform this function is one of the keys to obtain a
rapid application implementation.

The paper is organized as follows. In Section II, the state of
the art is analyzed. The target architecture is presented in
Section III while the algorithm is shown in Section IV. The
implementation proposal is described in Section V. Some
results are shown in Section VI. Finally, the conclusions are
drawn in Section VII.

II. STATE OF THE ART

In [1] an automatic human background substitution system

algorithm is implemented on a multi-core processing

architecture. Compared to a single processor implementation,

the experimental results show significant speedup ratio of the

parallelized system on a multi-core embedded platform, which

consists of an ARM processor and two DSP cores.

The article in [2] presents an efficient implementation of

the algorithm on a multi-processor architecture. The

algorithm-architecture aims to optimize the implementation of

the algorithm on a low-cost and heterogeneous architecture

(an ARM processor with SIMD coprocessor and a DSP core).

In the paper in [3], they describe synchronization counters,

a mechanism that allows seamless implementation of low-

latency multiprocessor synchronization. This mechanism is

used in heterogeneous multiprocessor environments even

when the individual processing elements lack native

synchronization support. The SoC contains three special

This work has been supported by Project TEC2011-28666-C04-02 given
by the Spanish ministry of Economy and Competitivity.

Figure 1: Picture for the recognition application

purpose DSPs and an ARM application processor, sharing

system memory and peripherals.

Design and implementation of embedded parallel DSP

software poses various challenges due to the complexities

posed by the application as well as heterogeneous nature of

the platform. One of most issues with regards to such system

is communication between processors. In [4], they present a

reusable message passing software framework to make

application level code more portable. The software framework

is applied to an ADSP-TS101 DSP multi-processors platform.

III. TARGET PLATFORM

A BeagleBoard XM [5] is chosen as the target platform in
this work. This platform includes a SoC of the OMAP family
from Texas Instrument with two cores: an ARM Cortex A8 and
a DSP 65+ with a maximum clock rate of 1GHz.

The API Codec Engine available by Texas has to be used to
execute code in the DSP. To perform the call to the code
developed, an API layer called VISA is used. The structure of
the software stack is defined using the Codec Engine that is
shown in Fig. 2. Inside the layer VISA there are different types
of interfaces, mainly oriented to processing audio and video. In
this paper, the IUNIVERSAL interface will be used since it can
work with any kind of data.

It is important to pay special attention to how to use the
DMA (Direct Memory Access) interface. It is necessary to
program the DMAs to allocate adequately the data that is
processed in the DSP. This data has to be stored in the cache of
the board. It is also needed to store intermediate results from
the algorithm implementation in this cache. This programming
is vital to obtain a fine DSP performance because high data
traffic through the DMAs will increase the total execution time
of the algorithm.

In addition, it is needed to reserve a special memory device
called CMEM that allows the reservation of memory in
contiguous positions. By using this tool, the DMA operations
performed with the DSP will be more efficient. Furthermore, it
is necessary to describe a memory map that includes the part of
the algorithm that is executed in the DSP, the buffers to store
the intermediate data, the communication system and the

operative system.

IV. ALGORITHM

There is a first version of the application code written in C
and tested in a PC. Unfortunately, although it was obtained a
rapid application when executing in the PC (with a total
execution time of less than 1 second), the final architecture is a
handheld device with the board explained in Section III. The
execution time of this code in the target application increased
eight times. Thus, the original code has to be modified to
improve its performance in the board. In order to accomplish
that, an analysis of this code is needed.

The core of the recognition algorithm is composed of two
main stages. The first part of the algorithm calculates the angle
necessary to rotate the whole picture (Fig. 1), so all the clocks
are allocated in horizontal position. To estimate that, the image
is rotated in 23 steps (accomplishing a rotation of 180º) and a
search of a pattern with the text “HOUR 99” is performed. It is
possible to observe this text in the image of Fig.1 and it is used
to establish a first reference of where are located the six clocks.

Once the algorithm has found the approximated angle of
the image compared to the horizontal position, the process is
repeated (4 more rotations) but just around the first estimated
angle. Thus, a finer estimation is obtained. After establishing

Fig. 3: The two stages of the algorithm recognition

Fig 2: API layer used with the BeagleBoard

the final angle, it is possible to locate the position of the 6
clocks with simple trigonometric functions.

The second stage is to recognize the central part of each

clock. The objective now is to determine the rotation for every

clock (this rotation is different for each of them). So, the

algorithm performs 90 rotations per clock (with an angle of 4º

per rotation) and compares the reference pattern (that is the

text inside of each clock: YEAR, HOUR…) with the image of

each clock rotated.

Once all the rotations for each clock are performed, it is

possible to determine which is the angle of each clock and to

calculate which is the value that each clock is pointing. It is

important to remind that this process is performed for each of

the six clocks. In Fig. 3 is shown what are the patterns and

images involved in this application. Therefore, the algorithm

performs 90x6=540 searches for the clocks, plus the 27 (23+4)

initials searches to find the pattern "HOUR 99". It is important

to explain that each of these searches is composed of two

steps: a rotation and a matching estimation.

The rotation is performed by using bilinear interpolation.
The final goal is to rotate around the center of the image. For a
rotation over an angle φ, a point (x, y) in the original image is
mapped onto the point (x’, y’) in the resultant image. The
relation between the points is:

x’ = x cos(φ) − y sin(φ)

y’ = x sin(φ) + y cos(φ)

In a geometric transform we need to express x’ and y’ as
functions of x and y. It is necessary to rotate over −φ to get
from (x’, y’) to (x, y). Thus, it is obtained:

x = x’ cos(φ) + y’ sin(φ)

y = −x’ sin(φ) + y’ cos(φ)

The rotation algorithm then enumerates all points (x’, y’) in
the resulting image, calculates the corresponding point (x, y) in
the original image and uses a bilinear interpolation method to

estimate the value of the original image in (x, y) and assigns
that value to the point (x’, y’).

 The matching consists in searching similitudes between a
pattern (a stored and fixed image) and the rotated image. This
matching is accomplished by performing a correlation (in the
frequency domain, since it is less consuming to implement than
in the time domain) that consist in performing a 2-dimension
FFT to both the rotated image and the pattern, to perform a
complex multiplication to both outputs of the 2D FFTs and,
finally, to perform and inverse 2D FFT. This correlation
process can be observed in Fig. 4. This matching has to be
performed several times until the whole picture (for each
rotation) has been compared to the template. The final
matching is obtained for the zone of the image that obtains the
highest value in the correlation. This is the pseudo code that
implements this matching-correlation process:

A=FFT2D image

B=FFT2D template

C=Complex Conjugate Multiplication (A*B')

IFFT(C)

In the original code, several complex 2D FFTs, among
other functions, were performed. These mathematical functions
were performed by using the openCV library. This library is
oriented to programming functions aimed at real-time
computer vision. The time that the algorithm spent in the 540 +
27 = 567 searches is the 75% of the total application executed
in the PC. Therefore, the rotation plus matching performed for
each search is the most consuming part of the algorithm. The
main aim of this work is to reduce this time by implementing
the algorithm in the BeagleBoard platform already mentioned.

V. IMPLEMENTATION PROPOSAL

Since the algorithm is going to be implemented in a board
that includes an ARM processor and a DSP, it is important to
take advantage of these resources. Therefore, two important
adjustments to the C version of the code are proposed in this
paper: algorithmic optimizations and parallelization. They are
explained in the rest of this section.

A. Algorithmic optimizations

One of the problems of the first code version was that while
the openCV functions is being executed in a low amount of
time for Intel processors, the time execution increases
dramatically for the ARM processor of the target architecture.
The DSP can not even be used with this first version of the
code, since it needs special functions. Thus, it is necessary to
create an ad-hoc code to obtain a fine final implementation.

Another reason to create this new code is because the DSP,
even admitting “float” and “int” data types, it does not have
specific instructions for the “float” type and has to emulate
them, needing more time to accomplish that. The original code
uses “float” type to avoid loss of precision so a direct
implementation of this code in the DSP would increases the
execution time dramatically.

Figure 4: Matching (correlation)

In addition, the code implemented in the board will have to
use the FFT defined in the library of the DSP
(DSP_fft32x32_cn, Texas Instruments). This FFT can be radix-
2 or radix-4 so it works with data sizes power of 2. Also, in the
library from Texas Instruments there are available FFT
versions of 32 or 16 bits. In this work it was chosen data size of
32 bits because there was a huge loss of precision with data
size of 16 bits. For that size, most of the clocks estimations
were wrong.

The FFT available in the DSP library is of one dimension
so the 2D FFTs needed for the algorithm has to be built using
this one. The Fig. 5 shows how to build a 2D FFT by using 1D
FFT function. If an image has size of NxM, then to perform one
2D FFT of that image requires to perform (N+M) FFTs of 1
dimension.

Taking all this into account, different optimizations have
been applied to the final implementation with respect to the
OpenCV version in this work. They are explained in the next
points:

a) The FFT of the pattern is not performed every time a

new matching process is performed. This is possible since this

pattern is fixed and does not change as opposite to the

window- image (Fig. 4) that is changing with the search. So,

instead of performing 90*6=560 2D FFTs of the template, it is

only performed once per clock, thus it can be reduced from

560 to 6. This is shown in Fig. 6.

b) Rewriting of the code when implementing the inverse

2D FFT. The algorithm performs the matching (explained at

high level in Fig. 4) using 1D FFTs as shown in the Figure 7.

But it is necessary to store the intermediate values of the

matrices and the use of the DMAs increase the total execution

time. So, it is possible to join the calculation of the column 1D

FFT with the column of 1D inverse FFT as it is shown in

Figure 8. This allows the reduction of the writings and

therefore the use of the DMAs of the target platform.

c) Reduction of the number of 1FFTs performed in the

last step of the 2D FFT process. This is shown in Fig. 9. This

allows the reduction of the number of iterations compared to a

general case. This is possible because thanks to the

optimization b) applied, part of the output of this last 1D FFT

can be discarded since it contains no useful data. This

reduction depends of the size of the image.

 d) Algorithms to perform forward and inverse Fast Fourier

Transforms (FFT and IFFT) typically assume complex input

and output data. However, many applications use only input

real-valued data as it is this case. But it is possible to use the

complex-valued FFT and IFFT algorithms to efficiently

process real-valued sequences length N/2 FFT and IFFT

computation instead of length N.

Since the input of the first 1D FFT in Fig. 5 is real (it does

not have imaginary part), it is possible to reduce the size of the

FFTs when performing FFTs of 1 dimension as it was

Figure 5: 2D FFT with 1D FFT functions

Fig. 6: Storing the FFT of the template

Fig 7: Matching process

explained in [6].

e) When escalation is needed, instead of using the operator

division “/” it is proposed to use the operator shift (>>). This

solution uses fewer resources of the target board when

performing division by 2.

f) Search of 90º instead of 360º for the 6 clocks. This

optimization takes into account the trigonometric properties to

avoid performing the rotation from 0 to 360º. So, only

rotations from 0 to 90º are calculated and the rest correlation

outputs are estimated thanks to the trigonometry properties nd

it is avoided the use of the rotation function.

B. Parallelization

Parallelization has to be performed taking into account both
the ARM and the DSP. Since the search is the most consuming
process and it is divided in 2 steps (rotation and matching-
correlation) it would be ideal to perform these steps in parallel.
The ARM will perform the rotation and the DSP the correlation

since it has specific functions to perform this step more rapidly.
This is shown in Fig. 10.

The code for the correlation performed in the DSP is
already optimized from the algorithmic optimizations
explained in last subsection. By reducing the number of FFTs
and the access to DMAs a rapid correlation is obtained.
Moreover, when first measurements were performed at the
final platform with the parallelization observed in Fig. 10, it
was observed that the rotate performed in the ARM needed
more time than the correlation performed in the DSP.
Therefore, it was necessary to accelerate the rotation performed
in the ARM.

This effect was not observed in the original version, since
this is a problem associated to the target architecture that has
fewer caches memory than in the PC. To improve the
performance, instead of the classical rotation, the rotation by
deformation or shears has been used. It is explained now.

A shear in the X direction produces y':= y (unchanged) and

x':=x+α y. It turns out that any orthogonal transformation can

be performed by a combination of a shear along one axis, then

a shear along the other axis, followed by another shear along

the first axis.
Doing a rotation by performing three shear operations

might be advantageous, because it is easy to do a shear
operation. To do a shear operation on a raster image (that is to
say, a bitmap), there is just to shift all the pixels in a given row
(column) by an easy-to-calculate displacement. But in order to
do a rotation using shears, it is necessary to calculate the values
of α, β, and γ from the rotation angle Θ. The original matrix
rotation s is:

 [

]

Set the rotation matrix equal to the product of the three
shears:

Fig. 8: Optimization b)

Fig 9: Optimization c)

Fig. 10: Proposed parallelization

Therefore, the angle that has to be introduced in the
deformations is:

This rotation has a loss of precision in the data while the
angle gets higher. That is the reason to limit its use to angles
between -45 and 45 degrees. To achieve the full rotation, a
prior rotation of 90, 180 or 270 is performed if needed. For
these angles, the rotation only implies the change of the
position of the pixels (transposition of rows and/or columns).

VI. RESULTS

In this section the performance obtained for the application
in the Beagle board is shown. First, the performance using the
FFT from the library of the DSP and the performance of the
FFT (using an equivalent function to the one used in the DSP
library) implemented in the ARM processor of the board are
shown in Fig. 11. It can be observed that the number of cycles
needed for the FFT in the DSP increases almost linearly while
by using the ARM this increase is exponentially. Thus, it was
clear that the FFT (that is the core of the matching process)
should be implemented in the DSP of the board.

The final execution time results obtained by different
versions of the complete algorithm are shown in Table I. These
versions are the initial version (PC oriented), the version with
the optimizations described and, finally, the version including
the optimizations and also the parallelization. It is possible to

observe that the initial version is the one that obtains the worst
time. That is because it uses library functions from openCV and
also the “float” data types. And, as it was already explained,
they are not optimal for the target platform of the project. But
by creating a code with the optimizations explained in this
paper, it was possible to reduce almost four times the execution
time. This is because of the reductions of the most expensive
functions and also to the reduction of the memory transactions
that produces special time penalty in heterogeneous platforms.
Finally, by implementing the algorithm in parallel (specifically,
rotation in the ARM and matching in the DSP) it was possible
to reduce the execution time to an additional 62%. To obtain
this reduction it was necessary to choose a different rotation
algorithm than the initial one.

TABLE I. IMPLEMENTATION RESULTS

 Original

code
Optimizations

Optimizations +

parallelization

Execution

time (seg)

8 2.1 1.3

VII. CONCLUSIONS

In this work, a pattern matching recognition algorithm is
implemented in a heterogeneous platform that includes a DSP
and an ARM processor. A modification of the first version of
the code (PC oriented) is needed to obtain a fine
implementation for the target platform. Two kind of main
modifications are proposed in this paper to accomplish this.
First, some algorithmic optimizations are proposed to reduce
the number of the most time consuming operations (FFTs) of
the algorithm and also to reduce the number of memory
transactions that would increase the total execution time. And
second, the parallelization of the code. In this case, the rotation
is performed in the ARM while the matching is performed in
parallel in the DSP. Performance results show the adequacy of
the proposed implementation.

REFERENCES

[1] Lee, Y., Chiang, C.-K., Su, T.-F., Sun, Y.-W., Kuan, C.-B., Lai, S.-H. ,
“Parallelized background substitution system on a multi-core embedded
platform,” Proceedings of the International Conference on Parallel
Processing Workshops , 2012 , pp. 530-537.

[2] Vincke, B., Elouardi, A., Lambert, A., “Real time simultaneous
localization and mapping: Towards low-cost multiprocessor embedded
systems” Eurasip Journal on Embedded Systems, art. no. 5, 2012.

[3] Moudgill, M., Kalashnikov, V., Senthilvelan, M., Srikantiah, U., Li, T.-
P., Balzola, P., Glossner, J., “Synchronization on heterogeneous
multiprocessor systems,” Proceedings - 2009 International Conference
on Embedded Computer Systems: Architectures, Modeling and
Simulation, IC-SAMOS 2009 , art. no. 5289224 , pp. 133-139.

[4] Wang, X.-M., Xu, R.-Z., Qiu, F., “A software framework of message
passing for parallel computing on embedded DSP systems,” Proceedings
- 2009 International Conference on Computational Intelligence and
Software Engineering, CiSE 2009 , art. no. 5365951.

[5] http://www.ti.com/

[6] http://processors.wiki.ti.com/index.php/Efficient_FFT_Computation_of_
Real_Input

Fig. 11: Comparative of FFTs performance

http://processors.wiki.ti.com/index.php/Efficient_FFT_Computation_of_Real_Input
http://processors.wiki.ti.com/index.php/Efficient_FFT_Computation_of_Real_Input

	I. Introduction
	II. State of the Art
	III. Target Platform
	IV. Algorithm
	V. Implementation Proposal
	A. Algorithmic optimizations
	B. Parallelization

	VI. Results
	VII. Conclusions
	References

