
14/07/2015

1

VIPPE: Parallel simulation and

performance analysis of complex

embedded systems

L. Diaz, E. Gonzalez, E. Villar, P. Sanchez

University of Cantabria

� The MPSoC

� Multi-processing platform

• ASIC

• FPGA

• Commercial multi-processing platform

� SW-centric design methodology

• Most of the functionality implemented as Embedded SW

• With ‘some’ application-specific HW

� Functional and extra-functional verification

• Simulation & Performance analysis

• Virtual HW/SW platform

• SW integration

Motivation

Motivation

14/07/2015

2

State of the art

• Functional Simulation
– Fast but inaccurate

• ISS
– Accurate but (even JITC) too slow

• RTL
– extremely slow

– only valid for final verification

Native Simulation

Fast and accurate enough

� Embedded SW simulation

Functional Simulation

Native & Trace-based co-simulation

Accurate Computation&Communication
estimations

Virtual Models

ISS Discrete-Time Models

HDL Discrete-Event Models

Native & Trace-based code simulation

Fast Computation&Communication
estimations

SW Simulation

Technologies

UML/MARTE

MDA

C

VHDL
Verilog

SystemC

HW/SW Implementation

RTL Synthesis

Compilation
IP

Reuse

Behavioral
Synthesis

HW PlatformEmbedded

SW

Co- Design

Functional
design

Executable

Specification

Requirements

14/07/2015

3

� Based on basic blocks

Native simulation

methodology

• Native simulation

VIPPE annotation process

14/07/2015

4

VIPPE Kernel

• Each target thread modeled
as a host thread

• Target RTOS as an additional
thread

• No need for thread locking

• Threads locking
– shared variable
– synchronization element

• i.e. semaphore

VIPPE Kernel

• Informing the kernel thread about their estimations of individual thread times,

access to memory, etc. via shared variables.

14/07/2015

5

VIPPE API

• Optimal reduced set of primitives

– Kernel services

• OS API implementation

MANAGEMENT OF PROCESSES MANAGEMENT OF TIMES

process_create time_real_watch

time_user_watch

MANAGEMENT OF THREADS MANAGEMENT OF SEMAPHORES

get_prio

set_prio

get_id

thread_create

thread_exit

thread_delete

thread_wait_for_end

semaphore_create

semaphore_wait

semaphore_post

semaphore_watch

MANAGEMENT OF SIGNALS MANAGEMENT OF AFFINITIES

vippe_signal

vippe_kill

uc_PE_mapping

uc_PE_dismapp

uc_take_OS_id

VIPPE API

14/07/2015

6

POSIX API

• POSIX API

– Events

– Concurrency

– Synchronization

– Timing and I/O

Events vippe_signal

vippe_kill

Concurrency process_create

thread_create

thread_delete

thread_wait_for_end

get_id

get_prio

set_prio

Synchronization semaphore_create

semaphore_wait

semaphore_post

semaphore_watch

Timing time_real_watch

time_user_watch

I/O semaphore_wait

semaphore_post

POSIX API

14/07/2015

7

POSIX API annotation

• POSIX API

– Annotated in the same way as user’s code

• VIPPE API

– Annotated at function-level

– Execution time and power depending on target

processor

Experimental results

• Evaluated with the PARSEC benchmark suite

– Princeton Application Repository for Shared-
Memory Computers

• Host

– 8 Intel Xeon E5-2687W at 3.10GHz

– Each processor has 8 cores, thus the host platform
integrates 64 cores with SMP capability

– 64Gb of RAM and 20Mb of cache

14/07/2015

8

Speed-up vs number of

target threads

• The number of cores of the target platform has been limited to 4

• Although the native simulation requires more host time than the
original benchmark, the speed-up is similar

• maximum difference between original code and simulation is about
15%.

Execution time vs number of

cores in the target platform

• Performance improvement in simulation execution time is
independent of the number of processors in the target platform

• Depends only on the number of host processors and application
threads

14/07/2015

9

Impact of the number of

host cores

• When the number of threads is higher than the
number of host processors, the time penalty due to
thread creation, scheduling time (i.e. context
switching), etc. increases execution time

• When the number of threads is equal to or lower
than the number of host processors, it can be seen
that the execution time of the simulation is reduced
proportionally to the number of threads in the
application

Impact of the number of

host cores

14/07/2015

10

Conclusions

• VIPPE: Native simulation tool

• Efficient

• Parallel

– Simulation of application SW

• multi-processing platforms

– VIPPE API

• optimized, general-purpose

• supports complex OS APIs (i.e. POSIX)

– Experimental results

• advantages in SW simulation on multi-core workstations

