

DESIGN, AUTOMATION & TEST IN EUROPE

14 - 18 March, 2016 · ICC · Dresden · Germany The European Event for Electronic System Design & Test

Fidelity of native-based performance models for Design Space Exploration

Fernando Herrera and Eugenio Villar University of Cantabria

Outline

- DSE
- Fidelity in DSE
- Estimation Technologies: Native Simulation
- Fidelity in Native Simulation
- VIPPE
- Conclusion

Design Space Exploration

Crucial Activity in Electronic System-Level Design!!

Exploration Space: Size Example

- # solutions:
 - 5 applications, 2 algorithms on app1, 2 algorithms on app2, 4 period combinations, 1-4 processors, 3 processor types, 3 frequencies, all possible application mappings
 - Design Space: 2x2x4x3x(3^4)x(3^5)=944784
- ~1 million solutions
- 5 days analysis:
 - \rightarrow 200.000 solutions/day \rightarrow >23 alternatives/sec

DSE requirements

- Exploration speed
- "Sufficient" Accuracy: Fidelity in DSE context

Fidelity

Report from the Fidelity Implementation Study Group D.C Gross (Boeing)

"The degree to which a model or simulation reproduces the state and behavior of a real world object or the perception of a real world object, feature, condition, or chosen standard in a measurable or perceivable manner; a measure of the realism of a model or simulation; faithfulness.

Fidelity should generally be described with respect to the measures, standards or perceptions used in assessing or stating it. See accuracy, sensitivity, precision, resolution, repeatability, model/simulation validation".

DSE requirements (I): Exploration Speed

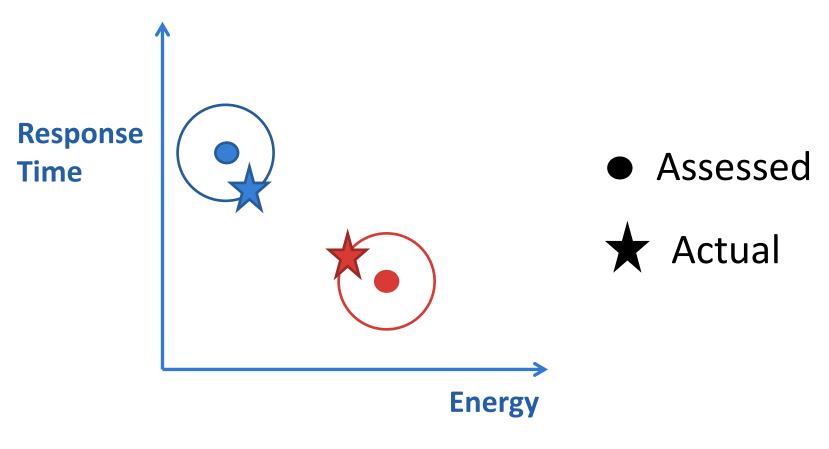
Assessment

- Analytical vs Simulation
- Simulation Speed

Search algorithm. Decide:

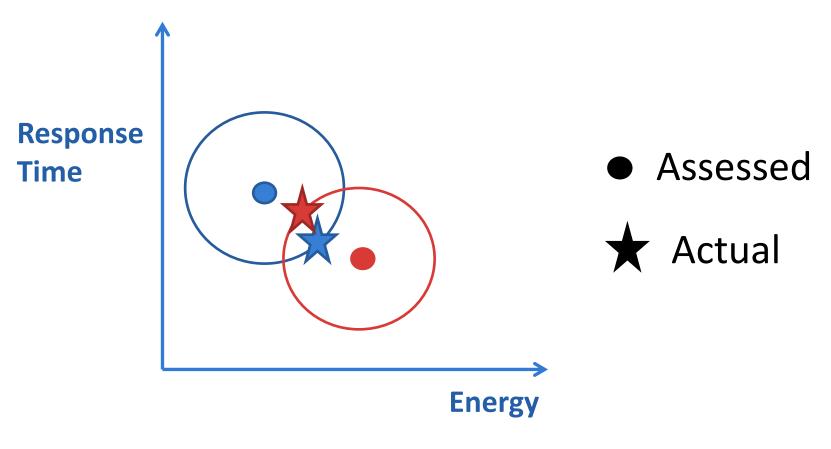
- Next point to be explored
- End of exploration

- Assessment transition
 - Data Exchange with exploration algorithm
 - Configure the model to be explored

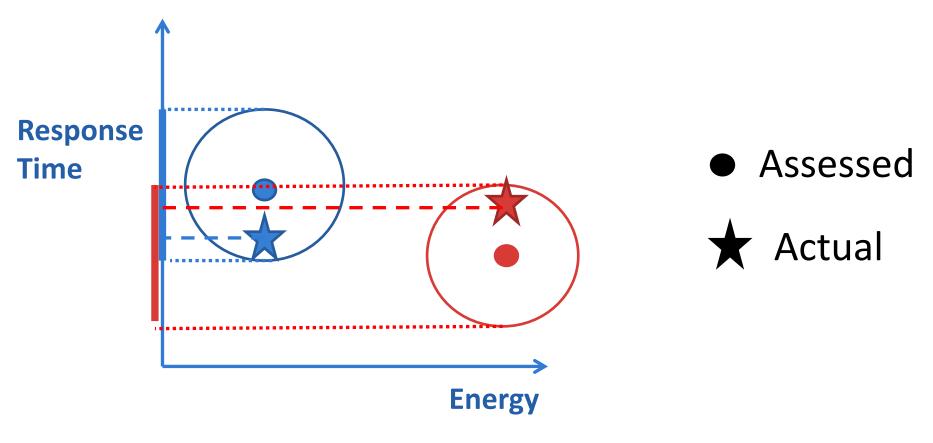

Simulation-based Performance Assessment Technologies

	Speed	d Up	Accuracy Degradation		
Functional Execution	100000			う	
Timed native co-simulation	10000			8	
Timed binary translation (QUEMU+, OVP+)	1000				
ISS (instructions)	100				
ISS with microarch. (cycle accurate)	10				
Pin&Cycle Accurate (HDL simulator)	1				

• Simulation-based Performance Assessment Technologies


DSE requirements (II)

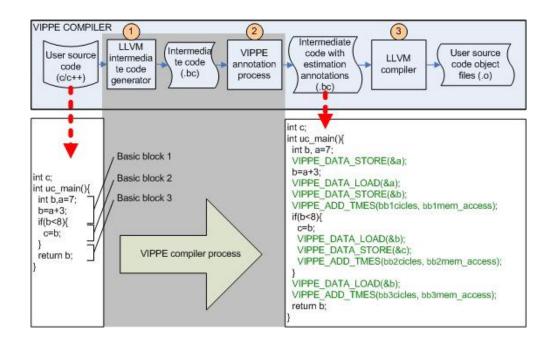
Sufficient Accuracy


DSE requirements (II)

Insufficient Accuracy

DSE requirements (II)

Insufficient Accuracy


Fidelity in DSE (as accuracy)

- Depends on the amount of solutions and the constellation amplitude (= density)
- One (Our) Criteria: <10% vs instructions accurate technologies
 Speed Up Degradation

Functional Execution	100000				
Timed native co-simulation	10000				
Timed binary translation (QUEMU+, OVP+)	1000				
ISS (instructions)	100]	
ISS with microarch. (cycle accurate)	10				
Pin&Cycle Accurate (HDL simulator)	1	V			

Native Simulation

- Instrument the source code
 - For performance cost accounting
 - Generating memory access traces
- Simulation speed: \sim (native program speed) $* \alpha$ (α <2)
 - Overhead of accounting and trace generation

Fidelity in Native Simulation

- In using the same source code
- In the assessment of performance, in the placing of events in the simulated time, considering the effects and penalties of:
 - SDK effect (compiler)
 - RTOS (if any)
 - hardware architecture
- Not (or not necessarily) in:
 - Placement of events on the emulated time axis (time decoupling)
 - the behaviour of sw platform and details relevant to SW development, e.g., in detecting every type of ilegal memory access in the target platform.

Native Simulation: Fidelity Challenges

Input code:

- custom parsing & reconstruction vs LLVM
- Object/Legacy Libraries [Henkel, CODES+ISSS'12]
- SDK (Compiler) Complexity
 - Optimizations [Rosenstiel, DAC11] [Henkel, DATE'12]
 - Target dependent headers
- Platform Complexity:
 - Target Processor
 - Word width, ISA [Posadas, 2006]
 - Internal architecture [Gerslauer, CODES'13][Rosenstiel, ESWEEK'14]
 - RTOS [Posadas, 2006][Gerlauer, DATE'11,ACM TECS 2014]
 - Cache model [Posadas, ASP-DAC'11] [Rosenstiel, DATE 12] [Gerslauer, ESLyn'13]
 - Memory hierarchies [Posadas,SIES'10]
 - Platform architecture [Posadas, 2009][Rosenstiel, DATE'11]
 - Cache coherence

Parallel Native Simulation

- P: # host cores, M: # target cores, T: # application(s) threads
- Exploit the underling parallelism of the host machine simulating each processing element in one core
 - Potential speed up: min(P,M,T)
 - >1 as long as M>1 ^ P>1 ^ T>1
 - Also in other technologies
- Thread-based parallelization (VIPPE)
 - Potential speed up: min(P,T)
 - >1 as long as P>1 ^ T>1, even if M=1
 - Breaks the M speed-up wall, as gain can be P if P > M ^ T>M
 - Challenges cache estimation

VIPPE

- Parallel native simulation
- Compilation branches: LLVM and source compiler
 - Optimizations
- Platform modelling
 - Processor modelling: armv7, sparc, LEON, microblaze
 - I&D Cache model
 - Heterogeneous Multi-core Platform Architecture
- Connection to SystemC
- Performance reports: time, energy, power
- GUIs

Conclusions

- Native Simulation: key simulation technology for simulationbased Design Space Exploration of complex embedded systems
- Fidelity required
- Fidelity requires information regarding the target processor, the cross-development kit, and the target architecture.
- VIPPE: last generation of native simulation tool with Fidelity for Design Space exploration
- More soon in http://vippe.teisa.unican.es