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Abstract. Heterogeneous architectures which integrate general purpose
CPUs with specialized accelerators such as GPUs and FPGAs are becom-
ing very popular since they achieve greater performance/energy trade-
offs than CPU-only architectures. To support this trend, the OpenMP
standard has introduced a set of offloading constructs that enable to
execute code fragments in accelerator devices. The current offloading
model heavily depends on the compiler supporting each target device,
with many architectures still unsupported by the most popular compilers
(e.g. GCC and Clang). In this article, we introduce a new methodology
for offloading OpenMP annotated code to accelerator devices. In our pro-
posal, the software compilation and/or hardware synthesis processes to
program the accelerator are independent from the host OpenMP com-
piler. As a consequence, multiple device architectures can be easily sup-
ported through their specific compiler/design tools. Also, the designer
is able to manually optimize the original offloaded code or provide an
alternative input to the design flow (e.g. VHDL/Verilog or third party
IP cores for FPGA), thus leading to an effective speed-up of the applica-
tion. In order to enable the proposed methodology, a powerful runtime
infrastructure that dynamically loads and manages the available device-
specific implementations has been developed.

Keywords: OpenMP · Offloading · GPU · FPGA.

1 Introduction

Heterogeneous computing architectures which combine general purpose CPUs
and dedicated accelerators such as GPUs and FPGAs have become extensively
used both in large processing centers and on embedded systems. These plat-
forms outperform homogeneous multi-core CPU systems in terms of computing
capabilities and especially energy efficiency (operations per watt) [1]. In order
to facilitate the design for hardware accelerators, programming models such as
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OpenCL [2] and CUDA [3] have emerged and powerful hardware synthesis tools
have been introduced by the industry to enable the use of high-level languages
such as C, C++ and OpenCL to generate FPGA-based accelerators.

The performance of a code executing on a CPU (host device), can be im-
proved by offloading a code fragment (target region or kernel) to a hardware
accelerator (target device), like a GPU or FPGA. Since its origin, OpenMP has
proven to be an efficient and widely used model for programming shared-memory
symmetric multiprocessor (SMP) architectures. In recent versions, the standard
[4] has introduced a set of extensions to support code offloading to accelerators.
This model relies on the compiler to support the generation of the executable
code for the accelerator device. The implementation of the OpenMP offload-
ing features in GCC [5] and Clang [6] is still under development, with many
architectures still unsupported.

This paper introduces a new offloading methodology which allows both large
compatibility with different device architectures and flexibility in the design of
the computation kernels. In our approach, the SW compilation/HW synthesis
and (optionally) design flows for the accelerator device are independent from
the OpenMP compiler. In order to support the above, a flexible and interoper-
able runtime infrastructure has been developed, which fully integrates with the
standard OpenMP runtime.

The rest of this paper is organized as follows. In Section 2, the proposed
offloading methodology is introduced. Section 3 describes the implemented run-
time infrastructure, which we evaluate over some heterogeneous architectures in
Section 4. Section 5 provides related work. Finally, Section 6 concludes the paper
and discusses future work.

2 Methodology

2.1 Motivation

As explained in the previous section, one drawback of the current offloading
process in OpenMP is the fact that target devices must be supported by the
OpenMP compiler. Also, this scheme leaves the designer with very little or no
flexibility to modify the design in some scenarios such as offloading to hardware
accelerators, in which specific optimizations as well as code/algorithm modifica-
tions are required to generate efficient implementations.

This work focuses on the development of a new OpenMP offloading method-
ology. The key idea of our approach is to dissociate the OpenMP compiler from
device specific compilation/synthesis processes and provide an efficient mecha-
nism to integrate device implementations with the host executable during run-
time. In order to make it possible, a runtime infrastructure which integrates with
the OpenMP runtime is developed.

The elementary requirements that the proposed infrastructure has to meet
are summarized as follows:
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1. Allowing the development of new device implementations after compilation
of the host code. Runtime mechanisms are defined for dynamic loading of
the new device-specific implementations.

2. Enabling the runtime infrastructure to identify, during execution time, all
the available implementations as well as computing resources required to
execute them.

3. Enabling the runtime infrastructure to provide dynamic task allocation dur-
ing execution time. The designer will be able to use runtime library routines
to set the target device.

4. Allowing device-specific implementations to optionally include performance
metadata, like memory requirements, execution time or power consumption.
Similarly, identified computing resources may include information such as
memory size and clock frequency. This could be used to guide device selection
at runtime. In order to use this information, new OpenMP runtime functions
should be defined.

Let offloading to FPGA serve as an example of application. A proof-of-
concept implementation of OpenMP offloading to FPGA which integrates with
the LLVM offloading infrastructure has already been presented in [7]. It uses
Vivado HLS to generate the hardware from the C/C++ original code. Despite
the fact that the designer can add synthesis directives (pragmas) in the original
code to be used by the high-level synthesis tool, the code cannot be modified
with the aim of optimizing the generated hardware. In practice, it is well known
by hardware designers that a deep knowledge of the synthesis tool and wisely
modifying the input code (along with the use of directives) are key points to get
an efficient hardware design.

Our approach is based on generating a host binary which integrates device-
specific implementations during runtime and breaking apart the device code
compilation flow. Then, the original code of the OpenMP target regions can
be used as an input to the HLS tool though the designer is able to get into the
design flow and generate an optimized code as well. Moreover, hardware descrip-
tion languages such as VHDL or Verilog or even extern IP cores can be used
depending on the designer preferences. The integration of these implementations
is supported by the proposed runtime infrastructure. In addition, high flexibility
in terms of supported devices is provided since designers use device-specific com-
pilers or synthesis tools no matter whether they are supported by the current
OpenMP compilers.

2.2 Target Platforms and Supported Devices/Accelerators

With the increasing importance of heterogeneous platforms which integrate
CPUs, GPUs and FPGA-based hardware accelerators, supporting as many tar-
gets as possible is at the core of our methodology. From OpenMP API 4.0 (re-
leased in 2013) some directives to instruct the compiler and runtime to offload
a region of code to a device are available to the programmer [4,8]. However,



4 A. Alvarez et al.

support for the target devices must be included into the compiler infrastructure
in order to allow device offloading. In practice, offloading support in the most
commonly used compilers is still immature [5,6]. In our approach, by making
the device-specific design flow independent from the OpenMP compiler, it is
possible to offload a code region to almost any target provided that device com-
pilers or synthesis tools are available to the designer. We will focus on proving
the compatibility of the proposed methodology with: i) GPUs, which can be
programmed through OpenCL or propietary languages such as CUDA, and ii)
FPGA devices, through high-level synthesis or hardware description languages.

2.3 Offloading Design Flow
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Fig. 1. Design flow for the proposed OpenMP dynamic device offloading methodology.

Consider a computation node with a host device (CPU) connected to one or
multiple accelerators. The starting point in the OpenMP accelerator model flow
is a source file with standard OpenMP code, in which the region of code (known
as target region) to be offloaded to an accelerator (known as target device) is
specified by the target directive.

In our proposal (summarized in Fig. 1), the original input source file has to
be compiled and linked with a library which provides a runtime infrastructure
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to allow the use of the new dynamic offloading methodology. This infrastructure
integrates with the standard OpenMP runtime and will be detailed in section 3.
When a compiler supports offloading to a certain architecture, a binary for each
target is commonly inserted into the host fat binary file. In order to support
any potential target device, the source code corresponding to the target region
has to be included in the fat binary as well. Then, this code is extracted to be
used as the input of a separate compilation/synthesis flow. Automation of these
steps and integration of the proposed methodology into an existing OpenMP
open-source compiler are out of the scope of this paper.

The compilation/synthesis of the target code for the accelerator device are
dissociated from the OpenMP compilation process in the presented methodology.
On the one hand, the original source code of the target region can be directly
used to program the accelerator (e.g. as the input to a high-level synthesis tool to
generate an RTL design for FPGA). Also, the OpenMP code may be converted
to an OpenCL kernel to be executed on a GPU/FPGA [12]. On the other hand,
the designer has the possibility of modifying the code to achieve an effective
speed-up of the application in a particular device or even taking a different
approach, such as VHDL or Verilog in the case of FPGA or CUDA for a GPU
from NVIDIA. This flexibility is one of the biggest advantages of the proposed
methodology.

In order to run the target region in the accelerator device, the necessary
executable code for the host is generated in the form of a shared object (i.e. a
dynamic library). The tasks performed by these shared objects include manag-
ing the device status, the data transfer and the execution on the device. They
are not inserted into the fat binary — instead, they are designed to integrate
with the original host binary during runtime. Also, some device specific files can
be produced in the design process, such as a bitstream to configure an FPGA
device. Different implementations to accelerate the target region in multiple
devices may be available. A single shared object can contain different implemen-
tations, or individual shared objects corresponding to each accelerator can be
used (e.g. lib GPU.so, lib FPGA.so, etc). During execution time, the runtime
infrastructure is able to identify all the available devices and implementations.

3 Proposed Runtime Infrastructure

In this section, the features and implementation details of the proposed run-
time infrastructure are presented. First, we illustrate how it can be used from a
programmer’s point of view. Then, internal implementation details are given.

3.1 Programmer’s Perspective

The runtime library provides the programmer with a set of routines to select and
check the accelerator device during execution time. Their functionality could be
added to their OpenMP counterparts (see Table 1). It is fully interoperable with
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Table 1. OpenMP runtime library routines modified to enable the new methodology.

Function Description

void omp set default device(int device num) Selects the default target device.

int omp get default device(void) Returns the default target device.

int omp get num devices(void) Returns the number of target de-
vices.

the OpenMP runtime and all functions are designed to have a C binding, so that
it supports C and C++. An example of the use of the runtime library to offload
a code region from a programmer’s perspective is shown in Listing 1.1. In the
code, two concurrent OpenMP host threads are created, with identifiers ‘0’ and
‘1’. In thread 0, the function function1 is the target region to be offloaded to
the accelerator with device number ‘2’, which is assumed to be an FPGA in the
execution platform.

Listing 1.1. Device offloading example with the proposed infrastructure.

1 #define GPU 1
2 #define FPGA 2
3

4 void host_code(int *data_in , int *data_out)
5 {
6 omp_set_default_device(FPGA);
7 omp_set_num_threads (2);
8 #pragma omp parallel
9 {

10 int id = omp_get_thread_num ();
11 // ----Thread #1----
12 if(id == 0){
13 #pragma omp target
14 function1(data_in , data_out);
15 }
16 // ----Thread #2----
17 if(id == 1)
18 function2 ();
19 }
20 }

3.2 Implementation Details

As a result of the proposed design flow, two kinds of files are used at execution
time:

The host binary (required), which includes the original code and an
implementation corresponding to every target region marked for offloading for,
at least, the CPU. Implementations for other devices may be included into the
executable as well when supported by the OpenMP compiler.
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Shared objects (optionally), which include implementations for one or
multiple additional target devices, corresponding to one or various of the target
regions marked for offloading.

During the host program execution, the runtime infrastructure is initialized
the first time that a runtime routine or target region is executed. The available
shared objects containing device implementations are loaded and some runtime
lists are built : (i) a list of devices, (ii) a list of target-region functions and (iii)
a list of implementations for each function. This data structures are shown in
Fig. 2 and explained below.

Device 0 
(CPU)

Device N

Target
function 0

Target
function K

Host Binary 
(.exe) 

Global Device List Global Function List

Implementation 0 
(CPU)

Implementation N 
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Runtime

Device 0 (CPU) Implementation 0 (CPU)Target function 0

Target function K

Shared Object 
(.so) 

Device n Implementation nTarget function k

... ......

... ... ...

... ... ...

Table of targetregion implementations

Data structure
built during
execution ...

Fig. 2. Overview of data structures built by the runtime infrastructure.

Devices. The accelerators devices supported by the host compiler and the ones
defined in loaded shared objects are added to the global list of devices. Device 0
corresponds to the CPU and is always present. Every element in the list of devices
contains metadata (such as name, type, status...) and pointers to device-specific
management functions, which are detailed in subsection 3.3. Also, performance
characteristics can be included (number of cores, memory size...). The above
may be useful to add new functionality to the OpenMP runtime in the future,
such as guiding the device selection process during execution.
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Functions. For each target region marked for offloading with the target di-
rective in the code, a target-region function is extracted and added to the global
list of functions. Every element in the list contains information related to the
arguments of the function (number, type and direction) and points to a list of
implementations targeting one or more target devices (al least, the default CPU
version is available).

Implementations. The available implementations for each target-region func-
tion are added to the list of implementations. Every element in the list contains
data (such as the target device), pointers to implementation-specific manage-
ment functions (explained in subsection 3.3) and a pointer to the executable
code. Overall, the information handled by the proposed runtime method is or-
ganized in a table of target-region implementations, as represented in Table 2. In
this version of the runtime, each device is associated with only one implemen-
tation and vice versa (i.e. Impl.0 corresponds to Device 0, Impl.1 to Device

1...). When the required device for offloading of a target region does not have
an implementation available, the default implementation (Implementation 0)
is launched on the CPU. The table of target-region implementations allows to
integrate our proposal with the current OpenMP offloading methodology since
it uses a similar approach.

Table 2. Table of target-region implementations handled by the runtime.

Device 0 Device 1 . . . Device N
Function 0 Impl. 0 Impl. 1 . . . Impl. N
Function 1 Impl. 0 Impl. 1 . . . Impl. N

...
...

...
...

...
Function K Impl 0 Impl 1 . . . Impl N

3.3 Management of Devices and Implementations

For every device and implementation, a set of functions are provided to manage
and configure the accelerator and the execution during runtime. These functions
are summarized in Table 3. The runtime infrastructure internally employs these
functions, although the tasks they perform are specific for each device/implemen-
tation. Owing to that reason, they are defined in the shared objects containing
device implementations (default versions are in the host binary as well).

Fig. 3 shows the execution flow when a code region is offloaded to a device,
in order to illustrate how the runtime infrastructure makes use of the above
functions. As an example, consider offloading to a GPU through OpenCL. The
implementation and management functions have been loaded from a shared ob-
ject. When the runtime is initialized, all the available devices are recognized and
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Table 3. Internal runtime routines to manage devices and implementations.

Function Description

Device

open device() Checks if the device is in the execution
platform. If present, initializes the de-
vice. Allocates memory in the host to
store device data.

close device() Releases the device. Deletes device
data stored in the host memory.

lock device() Disables access to the device from
other host thread.

unlock device() Enables access to the device from
other host thread.

Implementation
init implementation() Initializes the implementation (e.g. al-

locates memory in the device).
close implementation() Clears the implementation (e.g. deal-

locates memory in the device).

opened. Only the devices included in the global device list can be recognized. In
this case, opening the device means initializing the OpenCL variables related to
the device, such as the context and the queue, as well as allocating memory in the
host to store these new information. When the host requires the execution of the
target region, the required implementation is initialized, which in this example
builds the OpenCL kernel and creates the buffers to store the transferred data in
the GPU memory. Before and after the execution, lock and unlock routines set
the device as busy/idle to control access to the device from other host threads
while it is being used. If the host thread terminates, the implementation and
devices are closed, deleting the stored information and releasing the allocated
memory from the host and the device. Otherwise, the implementation is not
closed by the runtime, since it is frequent that the target region needs to be
executed repeatedly (e.g. when processing a sequence of video frames). In this
case, a ‘soft’ initialization is performed in successive executions. For example,
there might be no need to rebuild the kernel or reallocate memory buffers —
in the ‘soft’ initialization, this is checked to decide whether they can be reused
from previous executions.

Initialize
Implementation

in	Device
Lock	Device Unlock	Device

Close
Implementation

in	Device

NoYes

Copy	Data	In Execution
in	Device

Copy	Data
Out

Execute
again?

Execute	Implementation

Fig. 3. Execution flow for device offloading performed by the runtime infrastructure.
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4 Experimental Evaluation

In this section, a proof-of-concept of the proposed methodology is presented. The
runtime infrastructure has been evaluated using two heterogeneous architectures:
a Zynq UltraScale MPSoC (CPU-FPGA) and a PC (CPU-GPU). More details
on the hardware are given in section 4.2.

The serial video processing system represented in Fig. 4 is used as a test
case. First, an RGB frame is taken from a camera. The image is converted to
grayscale and a sobel filter is applied, which is an edge detection algorithm. The
output image is shown on screen.

Read	Image RGB	to
Grayscale

Edge	
Detection Show	Image

Fig. 4. Block diagram of the video processing sequence used as a test case.

The system is parallelized using OpenMP with four host threads concurrently
executing the four tasks in which the system is divided. Therefore, a pipeline
is established with four images being processed at the same time. In order to
evaluate the proposed methodology, the edge detection function is marked for
offloading with a target directive. In order to program the GPU attached to the
PC, an OpenCL kernel has been generated. For execution on the Zynq MPSoC
device, Xilinx SDSoC has been used to produce the driver functions for the host
(dynamically loaded by the runtime) and the files to program the Zynq device (a
hardware accelerator for the FPGA logic has been generated from the original
target code with Vivado High-Level Synthesis). The host application code along
with the developed runtime structure has been compiled with GCC for both x86
and ARM architectures.

Tables 4 and 5 summarize the execution time of the previously described
example over two heterogeneous platforms: (i) a Xilinx ZCU102 board featuring
a Zynq UltraScale MPSoC with 1.20 GHz 4 cores ARM Cortex-A53 CPU inte-
grated with FPGA programmable logic and (ii), a laptop PC with 2.30 GHz 4
cores Intel Core i7-3610QM CPU and a NVIDIA GT630M GPU, both running
Linux. In the experiments, the input images are 640x480 and obtained from
the filesystem to avoid being limited by the camera framerate. The results are
averaged over 100 executions.

5 Related Work

Several previous researches have studied and implemented code offloading from
OpenMP annotated programs to accelerator devices. Liao et al. [8] first reviewed
the OpenMP Accelerator Model when support for heterogeneous computation
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Table 4. Performance on Xilinx ZCU102 - Zynq MPSoC ARM Cortex-A53 + FPGA.

Mode Frames per second

Serial (CPU) 9.2

Parallel + Offloading (CPU) 16.9

Parallel + Offloading (FPGA) 39.5

Table 5. Performance on PC - Intel Core i7-3610QM CPU + NVIDIA GT630M GPU.

Mode Frames per second

Serial (CPU) 79.2

Parallel + Offloading (CPU) 147.3

Parallel + Offloading (GPU) 295.3

was introduced in the OpenMP API 4.0 back in 2013. They presented an ini-
tial implementation built upon an OpenMP compiler based on ROSE [9], with
support for GPUs from NVIDIA by generating CUDA code.

More recently, some authors have worked to include OpenMP offloading sup-
port into the LLVM compiler infrastructure. To cite some of them, Bertolli et
al. [10] focused on delivering efficient OpenMP offloading support for Open-
Power systems and describe an implementation targeting NVIDIA GPUs. Their
approach automatically translates the target region code to PTX language and
eventually to low-level native GPU assembly, called SASS. Different optimization
strategies were integrated into Clang with the aim of maximizing performance
when compared to CUDA-based implementations. The CUDA device driver is
used to map data to/from the GPU. In [11], Antao et al. generalize the pre-
vious approach to handle compilation for multiple host and device types and
describe their initial work to completely support code generation for OpenMP
device offloading constructs in LLVM/Clang. Pereira et al. [12] developed an
open-source compiler framework based on LLVM/Clang which automatically
converts OpenMP annotated code regions to OpenCL/SPIR kernels, while pro-
viding a set of optimizations such as tiling and vectorization. Lastly, a proof-
of-concept implementation of OpenMP offloading to FPGA devices which also
integrates with the LLVM infrastructure was presented by Sommer et al. [7]. In
their work, Vivado HLS is used for generating the hardware from the C/C++
target regions. Compared to previous work, our proposal describes an alterna-
tive offloading methodology in which the device-specific compilation is no longer
attached to the OpenMP host compiler, thus requiring little compiler support
and integration effort.

6 Conclusions and Future Work

This paper introduces a new OpenMP device offloading methodology. In our
proposal, the device-specific software compilation and/or hardware synthesis
processes are dissociated from the OpenMP host compiler. The advantages of
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this approach include: (i) support for multiple devices (i.e. different architecture
GPUs, FPGAs...), while the standard offloading method heavily depends on the
compiler supporting each architecture; (ii) large design flexibility (in terms of
languages, design tools...) is provided to program the accelerator devices, being
specially demanded by hardware designers to generate efficient FPGA imple-
mentations (iii) little compiler support and integration effort is required. To
allow the application of the proposed methodology, we have presented a flex-
ible runtime infrastructure that dynamically loads and manages the available
device-specific implementations. Our future work includes integrating the pre-
sented runtime into an open-source compiler infrastructure and exploring the
use of performance data to guide the selection of an available accelerator device
during execution time.
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