
 Theoretical fundamentals of functional verification based on random
test benches

I. Ugarte, P.Sanchez

Microelectronics Engineering Group. TEISA Department. ETSIIT. University of Cantabria
Avda. los Castros s/n. 39005 Santander. Cantabria. Spain

{ ugarte, sanchez }@teisa.unican.es

Abstract – This paper introduces a methodology that allows
estimating the fault coverage of a set of random test
benches when all the possible faults are considered.
This magnitude is used to provide a meaning to path
coverage metric. The analysis is based on a
polynomial model of the system under verification
and makes use of numerical analysis and number
theory results.

The latest releases of commercial verification tools
often include coverage metrics and constraint-based
generation of random test benches. This commercial
interest may be provoked by several factors. Firstly, it
seems that currently, the best method of functional
verification automation is the coverage-driven
random-based test bench generation. Secondly,
designers show confidence in the results of random-
based functional verification and there is even the
impression that these test benches work better for
verification than for test. This impression is mainly
supported by practical experiences because although
there is a huge amount of work on the theoretical
bases of random testing, as far as we know, there is no
similar work on functional verification.

II. SYSTEM MODEL

In this paper, we assume that the system is described
at behavioral level as a set of statements that operate
with integer data. Some basic operators are supported
(addition, subtraction, multiplication, relational and
logic operators) as well as ‘if’ control statements.
Every execution path in the behavioral description can
be modeled with polynomials (which model the
system behavior) and a set of constraints, which
model the if-statement conditions.

The main goal of this paper is to explore theories that
can analyze random-based functional verification
methodologies. They are based on polynomial models
of the system under verification and they provide
fault-model independent coverage.

III. THEORETICAL FUNDAMENTALS
The goal of this paper is not to develop new
mathematical theories for functional verification.
Instead of this, some theories from computer algebra
and number theory will be used to understand some
verification results.

I. INTRODUCTION

The latest version of the International Technology
Roadmap for Semiconductors, ITRS [1], highlights
that verification has become the dominant cost in the
design process. Amongst the short-term verification
challenges, the document includes the need to
quantify the quality of the verification effort, in
particular, the need to provide a meaningful notion of
coverage.

Let r be the number of variables or dimensions of one
of the polynomials that model the system. Let
X=(x1,…,xr) be any point of the input space. Two
types of input spaces or domains are considered: real
(Rr) and q-element discrete () input domains
(where q is a prime power, q=km, with k prime and m
a positive integer).

r
qFTraditionally, the quality of a set of test benches is

evaluated with coverage metrics [2], such as code
coverage (statement/block and path coverage) and
control coverage (for example, branch or transition
coverage). In this paper, only code coverage metrics
will be considered. The goal of statement coverage is
to identify sections of code that are not executed. Path
coverage provides the percentage of execution paths
that has been activated.

The “Lagrange Interpolation Problem” [5] can be
stated in the real domain in the following form: Given
a finite number of Rr points (X1,…, XN) and some
real constraints y1,…,yN , find a polynomial p∈
R[x1,…,xr]d (subspace of r-variable polynomials of
total degree of at most d), such that:

The latest releases of commercial hardware simulators
normally support these metrics along with constraint-
based random test bench generators and verification-
oriented languages (PSL/Sugar, OpenVera, etc).

p(Xj)=yj j=1,…,N

In particular, we are interested in values of N for
which there exists only one polynomial p. From the
functional verification point of view, this set of N
inputs is the maximum number of test benches that
have to be applied to a polynomial model in order to
guarantee that there is only one possible behavior.

Other approaches evaluate the quality of the
verification test benches with behavioral fault models
based on the classical stuck-at fault model [3] or they
use observability-oriented techniques [4].

Counting zeros of polynomials in finite fields is an
important topic in number theory. In [6], the number
of polynomials that has zeros in a set of N points of

 is specified in Lemma 4.1: r
qF

LEMMA 4.1 [6]: Let A be a subset of of size

N such as that N.C(µ) <d. The number of
polynomials of [x1,…,xr]d having a zero of

multiplicity of at least µ at all the points of A is

r
qF

qF

dr1q)(]x,...,[x F# 1
×








N

Cq µ

From the verification point of view, the consequence
of this lemma is that, if we consider all possible
bugs/faults, the probability that a set of N random test
benches will not detect a bug/fault will be:

PNo_detect=
N

q 







 1
 (1)

Where q is the number of different values that any
input can take, and N the number of applied test
benches.

IV. FUNCTIONAL VERIFICATION OF DATA
STATEMENTS

A consequence of the theory in section 3 is that the
number of exhaustive test benches is independent of
the input ranges (or number of bits). Thus,

Proposition 1: The number of test benches that
completely verify a model depends on the maximum
polynomial degree and number of inputs, but it is
independent of the input range.

The consequences of this result are important. Several
verification techniques propose transforming the
integer inputs into bit vector inputs. This
decomposition transforms an integer model into a
binary model but it increases the number of variables
and the total degree of the polynomial. Thus the
verification complexity has been exponentially
increased with this transformation.
A direct conclusion of equation (1) is that after N test
benches are applied, the coverage of all possible faults

will be)11(
N

q



− , where q is the number of

possible values of the variables.
Thus, considering the metrics that can identify all the
behavioral polynomials (path coverage), we conclude:

Proposition 2: When a path is executed, the
probability that a faulty behavior is detected in an

output is 




− q

11 , where q is the number of input

values.

Finally, it can be directly concluded that, the product
of the percentage of covered path (verified
polynomials) and the probability in Proposition 2
provides an estimation of the fault coverage of the
data statements. Thus,

Proposition 3: The coverage of all possible data-
statement faults can be estimated by:

Fault_coverage = path_coverage * (







−

q
11)

V. CONCLUSIONS

This paper presents a methodology for analyzing the
coverage of functional verification metrics. This
polynomial-based methodology has been applied to
descriptions that only include data statements.
The main conclusion of the “path coverage metric”
analysis is that it will provide a high coverage if the
input range is big enough. The work also defines an
equation that allows estimating the fault coverage of a
sequence of N test benches. This equation is used to
estimate the total fault coverage that a path coverage
value provides.
Another conclusion of this work is the evaluation of
the exhaustive system verification complexity. This
complexity depends on polynomial degrees and input
number, thus transformations that increase these
values (for example, integer to bit vector conversion)
can have a strong impact on the verification
complexity.

VI. REFERENCES

[1] International Roadmap for Semiconductors.2003
Edition, in http://public.itrs.net/
[2] J. Bergeron, “Writing Test benches: Functional
Verification of HDL Models. 2nd Edition. Kluwer
Academic Press. 2003.
[3] F. Ferrandi, F. Fummi, D. Sciuto, “Test
Generation and testability Alternatives exploration of
critical algoritms for embedded application”. IEEE
Trans. On Computer. Vol 51, no 2, February 2002.
[4] J. Costa, S. Devadas, J. Monteiro,”Observability
Análisis of Embedded Software for Coverage-
Directed Validation”. Proceeding of ICCAD’00.
2000.
[5] M. Gasca, T. Sauer, “Polynomial interpolation in
several variables”. Advances in Computational
Mathematics, Vol 12, 2000.
 [6] J. Ragot, “Counting Polynomials with Zeros of
Given Multiplicities in Finite Fields”. Finite Fields
and Their Applications, Vol 5, 1999.

http://public.itrs.net/

