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Abstract –  This paper introduces a methodology that allows 
estimating the fault coverage of a set of random test 
benches when all the possible faults are considered. 
This magnitude is used to provide a meaning to path 
coverage metric. The analysis is based on a 
polynomial model of the system under verification 
and makes use of numerical analysis and number 
theory results. 

The latest releases of commercial verification tools 
often include coverage metrics and constraint-based 
generation of random test benches. This commercial 
interest may be provoked by several factors. Firstly, it 
seems that currently, the best method of functional 
verification automation is the coverage-driven 
random-based test bench generation. Secondly, 
designers show confidence in the results of random-
based functional verification and there is even the 
impression that these test benches work better for 
verification than for test. This impression is mainly 
supported by practical experiences because although 
there is a huge amount of work on the theoretical 
bases of random testing, as far as we know, there is no 
similar work on functional verification. 

 

II.   SYSTEM MODEL 

In this paper, we assume that the system is described 
at behavioral level as a set of statements that operate 
with integer data. Some basic operators are supported 
(addition, subtraction, multiplication, relational and 
logic operators) as well as ‘if’ control statements.  
Every execution path in the behavioral description can 
be modeled with polynomials (which model the 
system behavior) and a set of constraints, which 
model the if-statement conditions.  

The main goal of this paper is to explore theories that 
can analyze random-based functional verification 
methodologies. They are based on polynomial models 
of the system under verification and they provide 
fault-model independent coverage. 

 

III.   THEORETICAL FUNDAMENTALS  
The goal of this paper is not to develop new 
mathematical theories for functional verification. 
Instead of this, some theories from computer algebra 
and number theory will be used to understand some 
verification results.  

I.   INTRODUCTION 

The latest version of the International Technology 
Roadmap for Semiconductors, ITRS [1], highlights 
that verification has become the dominant cost in the 
design process. Amongst the short-term verification 
challenges, the document includes the need to 
quantify the quality of the verification effort, in 
particular, the need to provide a meaningful notion of 
coverage.  

Let r be the number of variables or dimensions of one 
of the polynomials that model the system. Let 
X=(x1,…,xr) be any point of the input space. Two 
types of input spaces or domains are considered: real 
(Rr) and q-element discrete ( ) input domains 
(where q is a prime power, q=km, with k prime and m 
a positive integer).  

r
qFTraditionally, the quality of a set of test benches is 

evaluated with coverage metrics [2], such as code 
coverage (statement/block and path coverage) and 
control coverage (for example, branch or transition 
coverage). In this paper, only code coverage metrics 
will be considered. The goal of statement coverage is 
to identify sections of code that are not executed. Path 
coverage provides the percentage of execution paths 
that has been activated.  

The “Lagrange Interpolation Problem” [5] can be 
stated in the real domain in the following form: Given 
a finite number of Rr points ( X1,…, XN ) and some 
real constraints y1,…,yN , find a polynomial p∈ 
R[x1,…,xr]d  (subspace of r-variable polynomials of 
total degree of at most d ), such that: 

The latest releases of commercial hardware simulators 
normally support these metrics along with constraint-
based random test bench generators and verification-
oriented languages (PSL/Sugar, OpenVera, etc).  

 
p(Xj)=yj                     j=1,…,N 

 
In particular, we are interested in values of N for 
which there exists only one polynomial p. From the 
functional verification point of view, this set of N 
inputs is the maximum number of test benches that 
have to be applied to a polynomial model in order to 
guarantee that there is only one possible behavior. 

Other approaches evaluate the quality of the 
verification test benches with behavioral fault models 
based on the classical stuck-at fault model [3] or they 
use observability-oriented techniques [4]. 



Counting zeros of polynomials in finite fields is an 
important topic in number theory. In [6], the number 
of polynomials that has zeros in a set of N points of 

 is specified in Lemma 4.1: r
qF

LEMMA 4.1 [6]: Let A be a subset of  of size 

N such as that N.C(µ) <d. The number of 
polynomials of [x1,…,xr]d having a zero of 

multiplicity of at least µ at all the points of A is 
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From the verification point of view, the consequence 
of this lemma is that, if we consider all possible 
bugs/faults, the probability that a set of N random test 
benches will not detect a bug/fault will be: 
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Where q is the number of different values that any 
input can take, and N the number of applied test 
benches. 
 

IV.   FUNCTIONAL VERIFICATION OF DATA 
STATEMENTS  

A consequence of the theory in section 3 is that the 
number of exhaustive test benches is independent of 
the input ranges (or number of bits). Thus, 
 
Proposition 1: The number of test benches that 
completely verify a model depends on the maximum 
polynomial degree and number of inputs, but it is 
independent of the input range. 
 
The consequences of this result are important. Several 
verification techniques propose transforming the 
integer inputs into bit vector inputs. This 
decomposition transforms an integer model into a 
binary model but it increases the number of variables 
and the total degree of the polynomial. Thus the 
verification complexity has been exponentially 
increased with this transformation. 
A direct conclusion of equation (1) is that after N test 
benches are applied, the coverage of all possible faults 
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possible values of the variables. 
Thus, considering the metrics that can identify all the 
behavioral polynomials (path coverage), we conclude: 
 
Proposition 2: When a path is executed, the 
probability that a faulty behavior is detected in an 
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values.  
 
Finally, it can be directly concluded that, the product 
of the percentage of covered path (verified 
polynomials) and the probability in Proposition 2 
provides an estimation of the fault coverage of the 
data statements. Thus, 
 
Proposition 3: The coverage of all possible data-
statement faults can be estimated by: 

Fault_coverage = path_coverage * ( 
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V.   CONCLUSIONS 

This paper presents a methodology for analyzing the 
coverage of functional verification metrics. This 
polynomial-based methodology has been applied to 
descriptions that only include data statements.  
The main conclusion of the “path coverage metric” 
analysis is that it will provide a high coverage if the 
input range is big enough. The work also defines an 
equation that allows estimating the fault coverage of a 
sequence of N test benches. This equation is used to 
estimate the total fault coverage that a path coverage 
value provides.  
Another conclusion of this work is the evaluation of 
the exhaustive system verification complexity. This 
complexity depends on polynomial degrees and input 
number, thus transformations that increase these 
values (for example, integer to bit vector conversion) 
can have a strong impact on the verification 
complexity.  
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