SystemC as an Heterogeneous **System Specification Language Eugenio Villar Fernando Herrera** University of Cantabria

- PCB
- MPSoC with NoC
- Nanoelectronics

November 16-17, 2006 Zurich, Switzerland

UNIVERSITY OF CANTABRIA

UNIVERSITY OF CANTABRIA

MoCC - Models of Computation and Communication

Main motivation

- Supporting different MoCCs
- Heterogeneous
- Executable
- Link to implementation
 - HW and SW
- Based on a standard language

MoCC - Models of Computation and Communication

SystemC as a system specification candidate

- SystemC specification methodology
 - Supporting different MoCCs
 - Heterogeneous
 - Link to implementation
 - HW and SW
 - Executable
 - Based on a standard language

MoCC - Models of Computation and Communication

SystemC as a system specification candidate

- SystemC is committed to support system design
 - Valuable input to OSCI and the IEEE
 - Theoretical foundations to the standardization process

MoCC - Models of Computation and Communication

SystemC as a 'straw man'

- System specification languages
 - Supporting different MoCCs
 - Heterogeneous
 - Link to implementation
 - HW and SW
 - Executable
 - Widely-used standard language

UNIFIED MODELING LANGUAGE

MoCC - Models of Computation and Communication

UNIVERSITY OF CANTABRIA

SystemC architecture

Methodology-Specific Libraries	Layered Libraries	
HetSC: Heterogeneous System	Verification library	
Specification Methodology Library	TLM library, etc	
Primitive (Channels	
Signal, Fifo, Mutex,	, Semaphore, etc	
Structural Elements	Data Types	
Modules	4-valued logic	
Ports	Bits and Bit Vectors	
Interfaces	Arbitrary Precision Integers	
Channels	Fixed-point types	
Discrete-Event (DE)	simulation kernel	
Ever	nts	
Proces	sses	
C++ Languag	je Standard	

MoCC - Models of Computation and Communication

1

MICROELECTRONICS ENGINEERING GROUP

UNIVERSITY OF CANTABRIA

MoCC abstraction

	\wedge	PN	KPN	SystemC-AMS			
untimed MoCs		CSP	SDF	SDF Analog Solver			
synchronous		Synchronous I	Reactive (SR)	solver			
MoCs		Clocked Syncl	hronous (CS)	solver Analog solver solver			
other timedMoCs		Discrete-1	Time (DT)	Discrete-Time (DT)			
Discrete-Event (DE) simulation kernel							

MoCC - Models of Computation and Communication

UNIVERSITY OF CANTABRIA

Design refinement support

untimed MoCs	PN CSP	KPN SDF	
synchronous MoCs	Synchronou Clocked Sy	us Reactive (SR) Inchronous (CS)	
other timedMoCs	Discret F	e-Time (DT) RT-ISS Discrete-Event (DE) Logic model	

MoCC - Models of Computation and Communication

UNIVERSITY OF CANTABRIA 🥇

MoCC - Models of Computation and Communication

UNIVERSITY OF CANTABRIA

MoCC - Models of Computation and Communication

UNIVERSITY OF CANTABRIA

Fundamental question Which are the MoCCs that can be abstracted from the DE MoCC? Relaxed answer: Any computable MoCC

MoCC - Models of Computation and Communication

Fundamental problems How to represent untimed events onto the DE MoCC? • Breaking the order relationship of δ cycles $|e_1 = (v_1, t_1) \rightarrow F_T(e_1) = (t_{e_1} \text{ ns}, \delta_{e_1})$ $e_2 = (v_2, t_2) \rightarrow F_T(e_2) = (t_{e_2} \text{ ns}, \delta_{e_2})$ $t_{e_1} < t_{e_2} \Longrightarrow e_1 < e_2$ $t_{e_1} = t_{e_2}$ and $\delta_{e_1} < \delta_{e_2} \Rightarrow e_1 < e_2$

MoCC - Models of Computation and Communication

UNIVERSITY OF CANTABRIA

MoCC - Models of Computation and Communication

SystemC specification structure

SystemC processes connected by channels
Timing evolving during the design process
Strict-Timed Test Bench

SystemC specification syntax

SystemC specification syntax

- Concurrent processes
 - As few restrictions as possible
 - Communication and synchronization through channels

MoCC - Models of Computation and Communication

SystemC specification syntax

SystemC heterogeneous specification

Horizontal heterogeneity

Ability to combine several MoCCs in the same specification

MoCC - Models of Computation and Communication

SystemC heterogeneous specification structure

- SystemC processes connected by channels
 - Border channels
 - Border processes

SystemC heterogeneous specification structure

SystemC heterogeneous specification structure

- SystemC processes connected by channels
 - Border channels

Border processes

MoCC - Models of Computation and Communication

UNIVERSITY OF CANTABRIA

MoCC - Models of Computation and Communication

