
> PAPER ID 16 <

Abstract— This paper presents some optimizations of a

verification technique based on non-linear solvers. The optimized
solver is able to automatically check assertions in behavioral
descriptions of hardware systems. These descriptions are
modeled with a set of integer polynomial inequalities. The
techniques have been evaluated with real electronic systems, such
as Viterbi decoders or vocoder digital filters.

Index Terms—Assertion-based-Verification (ABV), non-linear
solver, property checking.

I. INTRODUCTION
ccording to the 2004 report of the International

Technology Roadmap for Semiconductors [1],
Verification has become the main bottleneck of the design
flow as a result of two processes. Firstly, the functional
complexity of modern designs is continuously growing.
Secondly, the greater emphasis on other aspects of the design
process has produced important progress (automated tools for
logic synthesis, place-and-route, etc), leaving verification as
the main bottleneck that will be a barrier to further progress in
the semiconductor industry if there is not a major
breakthrough.

Formal verification techniques are beginning to gain
acceptance and they sometimes complement simulation
methods in the process of verification. The main goal of
formal hardware verification is to prove the functional
correctness of a design instead of simulating some vectors.
Most of the formal verification methodologies use Boolean
equations to model some aspects of the design.

Popular techniques to solve these Boolean equation systems
(or satisfiability problems) are based on Binary Decision
Diagrams (BDD) [2]. BDDs are used to represent binary
output value constraints in a canonical form. The main
disadvantage of the use of BDDs is the “memory explosion”
problem because of the huge size of the diagram even for
medium complexity designs. Several optimizations have been
proposed to compress the diagram (OBDD, ROBDD, etc).

Another way to solve Boolean equations is to use a SAT
solver. This technique avoids the exponential space blow-up

This work has been partially supported by the Spanish MCYT through the
TIC-2005-03301.

of BDD [3]. The main drawback is the handing of arithmetic
operators. These operators are transformed into a large
number of Boolean formulas which reduce the SAT efficiency
and limit its application domain [11]. To overcome these
disadvantages, hybrid satisfiability approaches, such as HSAT
[4], have been proposed. The goal is to combine a SAT and a
linear programming solver. The SAT checker is used to solve
the logic equations and the linear programming solver is used
to check the feasibility of the arithmetic equations. These two
engines operate in separate domains. The performance of
HSAT is limited by the heuristics that choose the set of
assignments to Boolean variables. Other similar approaches
(e.g. LPSAT [5]) are based on mixed integer linear
programming (MILP) techniques [5]. However, general ILP
solvers tend to be inefficient in solving real satisfiability
problems. Firstly, they do not directly handle nonlinear
operators (multipliers). Secondly, they have numerical
convergence problems, and they are sensitive to a number of
internal parameters. Other tools are based on Constraint Logic
Programming (CLP) techniques [6]. The CLP works at
Boolean level and/or Integer domain and it has similar
problems to MILP techniques.

Non-linear solvers make it possible handle behavioral
descriptions with non-linear expressions (multiplier operation)
without transforming them into linear expressions. This
advantage of the non-linear solvers is well known in handling
complex systems [10]. Starting from this point, this paper
presents different optimizations of a verification technique
based on a commercial global non-linear solver [7]. These
optimizations modify the polynomial model that the solver has
to solve and study different selection algorithms to find the
integer point (counter-example). These optimizations improve
the efficient handling of non-linear systems and the CPU
requirements.

II. SYSTEM MODELING
The hardware system is described at behavioral level as a

set of concurrent processes. The proposed verification
technique is focused on individual process validation, thus
only one process will be considered. This process is
suspended in an initial wait statement until the input values

Optimizations in the Verification Technique of
Automatic Assertion Checking with Non-linear

Solver
AUTHORS AND AFFILATION DATA MUST NOT BE INCLUDED IN THE FIRST FULL PAPER

VERSION FOR REVIEW

A

> PAPER ID 16 <

5*y > x
Fals Tru

T = x*x -3*y T = x + y

re = T * x + y

x – 5*y + 1 > 0

re = x*x –
3*y) x + y

5*y – > 0

re = x+y) x
+ y

change. After this, the process body is executed until the
initial statement (wait statement) is reached (reactive system).
Figure 1 shows this behavior.

 X1 X2 X3

Z1

I1

Figure 1: System Model.

The straight arrows model the external inputs (Xi) and

outputs (Zi). The gray box represents the ‘wait’ statement and
the dashed line the memories or state variables (Ii). The dotted
lines represent the execution paths (functionality) of the
process. The model includes integer variables and the directly
supported operators are addition, subtraction, multiplication
and relational (Figure 2). Other operators have to be
transformed into equivalent polynomial equation systems
(modulus operation and so on).

B,AE
B,AD
B,AC

] E,:reg[
] C, D,:reg[
] A, B,:reg[

×=
+=
−=

015
08
07

Β;ΑΕ
Β;ΑD
Β;ΑC

Ε
DC
BA

×=
+=
 −=

],[−∈
],[−∈
],[−∈

1638316384
255256,

127128,

Figure 2. Example of Basic Operator Modeling.

Other operators (e.g. bit selection, bit-wise logic operator,

etc) are transformed in a similar way.
Word-level logic operators (e.g. “or_reduce”) and bit-level

logic operations are transformed into integer polynomials. For
example, the logic equation “a = b or c” is transformed into “a
= b + c - (b*c).

It is assumed that all the previous equations take integer
values.

Concerning control statements, conditional ‘if’ statements
are totally supported. This sentence splits the execution flow
into two paths (True and False paths). These paths are
modeled with an additional variable whose values are ‘0’ and
‘1’. This variable enables the true path with the value ‘1’ and

disables the false path and vice versa. Figure 3 shows an
example and figure 4, the polynomial model. If ‘K=1’, the
expression ‘K’ selects the true path and the expression ‘1-K’
disables the false path. In the other case, when K=0, the ‘K’
expression disables the true path and the ‘1-K’ expression
enables the false path.

In order to model the expression of the ‘if’ conditional
statement, an aspect has to be considered. The value space that
goes through the false path is complementary to the true
space. In figure 3, the true expression is ‘(5y – x) > 0’ and the
false expression is ‘(5y – x) ≤ 0’. The last expression is
transformed into ‘(x – 5y) ≥ 0’ → ‘(x – 5y + 1) > 0’. And
finally they are weighted with the ‘K’ and ‘1 – K’ expressions
and summed (expression ‘ret’ of figure 4).

Polynomial
description of

the ‘False’ path

Polynomial
description of

the ‘True’ path

Figure 3. Polynomial description of a simple example

{ } (){ }
[]0,1K

31

01515
2

∈
+−+++=

>++

yxyx - K) (y y)x (x Kret

) y -K)(x - (y - x) K(

Figure 4. Model of the conditional statement.

 Finally, the loop operators are handled with restrictions.

The ‘for’ loops are totally unrolled when the number of
iterations can be statically determined. The ‘while’ loops
cannot normally be totally unrolled because it is not possible
to statically determine the number of iterations. In this case,
the verification algorithm will unroll a new iteration in every
step. This means that the algorithm will unroll one iteration in
the first step, two in the second and it will repeat the process
up to a user-defined maximum number of iterations. If several
‘while’ loops are nested, the number of unrolled statements
will grow exponentially.

With the previously commented transformation, the process
body (dotted line in Figure 1) will be modeled with
polynomials whose external input values will change in every
process execution. The assertion to be checked and the
conditional statements will be modeled with polynomial
inequalities.

> PAPER ID 16 <

Figure 8: Steps of the algorithm to find the integer solution in

the ‘space3’ example.

III. SYSTEM MODELING EXAMPLE
In this section, the generation of the polynomial model of a

simple example (space3) is presented. This set of polynomial

equations can be solved by a commercial global non-linear
solver.

The process body has three external inputs, x,y and z. They
are integers with range 0 to 255. Figure 5 presents the
behavioral description of the ‘space3’ on the top. On the
bottom, it shows the equivalent polynomial model of the
system.

IV. VERIFICATION METHODOLOGY
The goal of the proposed verification technique [10] is to

find a point that fulfills the set of integer inequalities that
model the hardware system and violates an assertion. Three
steps have been defined (Figure 6):

 // BEHAVIORAL MODEL

void space3 (uint8 x, uint8 y, uint8 z)
{
 int temp, dat, ret;

 dat = (x – 110)2 – (y – 28)2;
 temp = dat – (z – 170)2;
 if (10000 > temp)
 if (6*y – 2*x – 4*z > 0)
 ret = x + y + z;
 else
 ret = 0;
 ….
 Assertion(ret ≤ 340); // Assertion to check

 }

 // POLYNOMIAL MODEL

dat = (x – 110)2 + (y – 28)2;
temp = dat + (z – 170)2;
10000 – temp > 0;
6*y – 2*x – 4*z > 0;
ret = x + y + z;
ret > 340;

Figure 5: Example ‘space3’.

1.- Polynomial model generation
The behavioral description is transformed into an inequality

system that can be handled mathematically.
2.- Solve the inequalities system
A non-linear solver is used to find a solution in the real

domain. If there is a real solution, an algorithm that finds an
integer solution has to be applied (step 3). If there is no real
solution and the input description has “while” statements, a
new iteration of a ‘while’ loop will be added to the
polynomial system description before executing step 2 again.

3.- Derive an integer solution from the real solution
The goal is to find an integer solution taking into account

the information that the real-domain solution provides. The
technique defines two steps: variable rounding and branch-
and-bound exploration of the solution space.

The first step is to round the real variables to the closest
integer value. If there are 2 possible values (for example,

> PAPER ID 16 <

11.50 could be rounded to 11 or 12), a value will be randomly
selected. Figure 8 presents the decisions that the integer-
solution search algorithm takes with the ‘space3’ example.
The inserted assertion verifies that the ‘ret’ variable is never
greater than 340. In Figure 8, the ranges of the inputs are
included in ellipses. The rectangles contain the solutions that
the solver provides in the real domain, the hexagons, the
solution of the rounded input points and the rhombuses, the
variable that the “selection algorithm” reports.

Behavioral description

STEP1: Polynomial Model generation

STEP2: Solve the equations

STEP3:
 Derive an integer solution

 Exist counter-
example?

 Exist counter-
example?

Counter-example

Assertions always verify

New “while”
 iterations?

YES

YES

YES

NO

NO

NO

Figure 6: Verification Methodology.

The non-linear solver provides a first solution that is

rounded by the searcher algorithm to an infeasible solution
(the assertion is not violated or the inequalities are not
fulfilled).

In this case, the second step (branch-and-bound based
exploration) is applied. Firstly the selection algorithm
(rhombus) is applied to decide the variable that splits the input
space. Several selection algorithms are explained in section
V.2. In Figure 8, the selected variable is x. Secondly, the input
space of the selected variable is split into two parts: values
greater than the integer part (x>95) of the solution and values
less than or equal to the integer part (x<=95). This generates
two new sets of polynomial inequalities. These sets are solved
with the non-linear solver, thus two new sets of solutions and
maximum values of the assertion (A.V.) can be generated. If a
new set has no solution, its branch will be removed. The
algorithm will select the set that produces a higher assertion
value and it will repeat the searching process. This process
will be finished in a branch if one of these conditions is
verified:

1.- The solver cannot find a solution, thus the problem is
infeasible.

2.- The solver provides a solution, but the assertion is
always verified.

In these cases, the current branch will be removed and the
last unselected branch will be selected. This process is
repeated until a counterexample is found or all the branches
are removed (the assertion is always fulfilled).

V. OPTIMIZATIONS OF THE VERIFICATION TECHNIQUE
Three optimizations of the verification methodology have

been studied. One is applied in the generation of the
polynomial model (step 1) and the others, in step 3 (deriving
an integer solution).

A. Preprocessing of the polynomial model
The first optimization consists in transforming the

polynomial model into a new extended set of simpler
expressions. This helps the solver to find the optimized point.
The transformation splits each complex inequality into two
simpler inequalities: one with positive monomials and
another, with negative monomials (see Figure 7).

P = x2 + 3*y*z2 – t2*z – 292*t3

P+ = x2 + 3*y*z2
P– = – t2*z – 292*t3

P = P+ + P–

Figure 7: Transformation of polynomials.

These polynomials are always monotonic increasing (P+)

and decreasing (P–) in the positive area (all variables are
greater than or equal to zero). In the other areas, these
properties are not fulfilled. In this special area, the advantage
is that the derivative is always increasing or decreasing. This
preprocess adds new variables and constraints to the model:
one variable and one constraint for each constraint that is
transformed.

This increasing of the constraints and variables achieves
worse results if the number of new variables is considerable
compared to the total number of variables and the original
expressions are simple (linear polynomials) and therefore, the
complexity differences are similar between both models. The
results are very notable in models with positive variables and
complex expressions. Therefore, this optimization is applied
to complex models and, especially, to polynomials with
positive variables or negative variables. This decision is
justified by the results of section VI.

B. Selection algorithms
The second and the third optimization are applied in the

“Derive an integer solution” step (step 3). Starting from the
continuous solution that the solver provides, the algorithms
choose the dimension (variable) to split the input space and
remove the real solution of the space of searching. Depending
on the selected variable, the branch-and-bound exploration
can be more efficient and it could need less computation
resources. Two algorithms have been studied.

> PAPER ID 16 <

C. Gradient-based selection
The algorithm uses the partial derivative of the objective

function to choose the next variable to split. The objective
function is the polynomial expression of the assertion. The
partial derivatives are calculated in the real solution point. The
partial derivative enables the definition of a set of linear
equations that approximate the behavior of the objective
function in the area close to the real solution. This set of linear
functions allows estimating the objective function when a
variable is rounded to an integer value. The variable that
produces the maximum variation is chosen. This decision
produces the maximum variation of the objective function.

D. Selection based on maximum error
This algorithm depends only on the real solution that is

provided by the solver. This algorithm is the simplest because
it does not use the objective function. The variable, with the
fractional part closest to .5, is chosen. For example, the point
(158.43, 78.75, 64.21) have the (0.07, 0.25, 0.29) differences
with the middle point (158.5, 78.5, 64.5). Therefore, the first
value is closest to middle value and then, the first dimension is
the dimension to split the input space.

VI. EXPERIMENTAL RESULTS
In order to validate the optimizations of the verification

technique, three examples of behavioral level descriptions
have been selected. The first is a data-dominated example [8].
The number of possible input values is 2564 and the number
of points that violate the assertion is only two. The example
has 6 constraints and the maximum order of the polynomials
is 4. The second example is a Viterbi decoder algorithm [9].
This is a soft decoder with a rate of ½, a constraint length of 3
and a survivor window length of 16. The inserted assertion
checks if there is overflow in the maximum value of the path
metric accumulator. Finally, the third example is the ‘Pre-
Process’ module of the GSM standard (ETSI EN 301.245,
December 1997). This module is a second order high pass IIR
digital filter with cut off frequency at 80 Hz and 4 taps. The
assertion verifies that the accumulated values are not
saturated.

The CPU times in the Tables correspond to seconds on a
Pentium IV with 2 GB of RAM at 2.8 GHz under Windows
XP.

The first optimization is evaluated for the three examples
(Table 1) and compared with different tools. The first row is
the time, in seconds, that a SAT tool (Berkmin [12]) needs to
verify the system. The second row (Integer solver) shows the
time that an integer solver (LINGO) needs to provide a
solution. And the last two rows show the time that the
proposed technique needs to solve the problem (without the
preprocess optimization and with the optimization). Some
cases have no time (OFL – Out oF Limit) because the program
was aborted or it did not have enough resources or the time
was greater than 24 hours.

The first example (Viterbi) has linear expressions and
variables with range [0, 255]. The optimization reduces the
execution time by 8 seconds, 5% of 158 seconds. The second
example (IIR Filter) has linear expressions and variables with
range [-32768, 32767]. The time is worse in the model with
optimization. This example without optimization is composed
of 22 iterations. The first iteration is a simple model with 3
variables and the last iteration is a complex model with 170
variables. The partial results are better in the optimized model
when the description has few variables. But this difference is
reversed when the description is more complex. The total time
of the optimized model is a little worse. The third example has
non-linear expressions and variables with positive ranges [0,
255]. In this case, the reduced time is near to 30%. The solver
needs 65% of the total number of iterations that it requires to
solve for the original description.

This optimization provides better results when the
description has complex expressions (non-linear) and the
values of the variables are either positive or negative.

 Viterbi IIR
Filter Space4

SAT 2486 OFL 36
ILP OFL OFL 4

without
opt.

158 448 3 Our
approach

with opt. 150 504 2.1

Table 1: Experimental results of the first optimization.

The others optimizations are evaluated with the ‘space4’

example. In order to carry out a better comparison between
both selected algorithms, several versions of the example with
different objective function have been proposed. ‘Space4-0’ is
the original example and the other rows of the Table 1 are
different versions (from ‘space4-1’ to ‘space4-5’). All
versions maintain the same properties as the original example.
Table 2 shows the number of times that the proposed
algorithms are applied to find the integer point (#Exe) and the
total execution time in seconds (Time). The ‘difference’
column is the difference between ‘Gradient-based’ algorithm
and ‘Maximum error’ algorithm.

Gradient-

based
Maximum

error Difference

Time #Exe Time #Exe Time #Exe
Space4-0 10 6 9 3 1 3
Space4-1 14 12 8 5 6 7
Space4-2 15 17 17 21 -2 -4
Space4-3 7 2 5 1 2 1
Space4-4 15 22 10 5 5 17
Space4-5 14 9 14 11 0 -2

Total 75 68 63 46 12 22
Average 12.5 11.3 10.5 7.7 2 3.6

Table 2: Transformation of polynomials.

> PAPER ID 16 <

The temporal results have more dispersion in the second
selection algorithm but the execution time is 33% better on
average than the gradient-based algorithm.

VII. CONCLUSIONS
This paper presents several optimizations of the verification

methodology based on a non-linear solver. These
optimizations improve the capabilities and performance of the
non-linear solver. One of the main optimizations is
transforming the expressions of the polynomial model into
simpler expressions. This improvement is greater with
complex expressions and with variables that have only one
sign (either positive or negative). The improvement in
‘space4’ is nearly 30%. The other optimizations affect the
number of times that the verification algorithm is executed
and, therefore, the execution time. The improvement of the
execution time of the second algorithm is on average 33%.

REFERENCES
[1] “The International Technology Roadmap For Semiconductor”. 2004

Edition. Design.
http://www.itrs.net/Common/2004Update/2004_01_Design.pdf

[2] R.E.Bryant, “Graph Based Algorithms for Boolean Function
Manipulation”, IEEE Transactions on Computers, vol. C-35, pp. 677-
691, August 1986.

[3] A. Biere, A.Cimatti, E.M.Clarke, M. Fujita, Y. Zhu, “Symbolic Model
Checking Using SAT procedures instead of BDDs*”. Proc. Of DAC’99.
1999.

[4] F. Fallah, S. Devadas, and K. Keutzer, “Functional Vector Generation
for HDL models using Linear Programming and 3-Satisfiability
Infrastructure using the Unite Recursive Paradigm”, in Proc. Of DATE
2000, 2000, pp. 232 – 236.

[5] Z. Zeng, P.Kalla, and M. Ciesielski, “LPSAT: A unified approach to rtl
satisfiability”, in Proc. DATE, March 2001, pp. 398-402.

[6] Zeng Z., Ciesielski M., and Rouzeyere B., “Functional test generation
using constraint logic programming”, in VLSI-SOC Conference, 2001.

[7] LINDO API., www.lindo.com, Lindo Systems Inc.
[8] Reference omitted.
[9] John P. Elliot, “Understanding Behavioral Synthesis. A Practical Guide

to High-Level Design”, Kluwer Academic Publishers, 2000.
[10] Reference omitted.
[11] Ganapathy Parthasarathy, Madhu K. Iyer, Kwang-Ting (Tim) Cheng,

and Li-C. Wang, (March-April 2004) “Safety Property Verification
Using Sequential SAT and Bounded Model Checking”, IEEE
Design&Test of Computers 132-143.

[12] E. Goldberg, Y. Novikov, “BerkMin: a Fast and Robust Sat-Solver”,
DATE’02. 2002.

