The association for R&D⁺ actors in the field of ARTEMIS

In Multi-Processing Embedded Systems

Eugenio Villar University of Cantabria

SW Simu

HW/SW Implementation

Embedded Systems - 2

- Motivation: Why SW simulation
- Technologies: How SW simulation
- SCoPE: SW simulation for DSE
 - > SW performance analysis
 - Improvements for Scalopes
- Conclusions

The association for R&D actors in the field of ARTEMIS

The MPSoC

- Multi-processing platform
 - ASIC
 - FPGA
 - Commercial multi-processing platform
- SW-centric design methodology
 - Most of the functionality implemented as Embedded SW
 - With 'some' application-specific HW

Software Reliability

ware bugs are costing the U.S. WASHINGTON OMPUTFRN RID. **≪**59.5 b nore than half of the cost economy an estima. borne by end users and and vendors, according to In Embedded SW both a new federal st Functionality and Performance are relevant your a mind, or \$22.5 billion, Improvements in te but it won't eliminate all so Of the total \$59.5 billion cost, users incurred 64% 6% elopers and http://www.cse.lehigh.edu/~gtan/bug softwarebug.html

- http://www.sereferences.com/software-failure-list.php
- http://www5.in.tum.de/~huckle/bugse.html ...

- Embedded SW simulation
 - > As an integral part of the MPSoC simulation
 - Essential for MPSoC verification
 - At any abstraction level
 - Essential for DSE
 - During architectural design
 - Essential for performance analysis
 - At any abstraction level

The association for R&D^{*} actors in the field of ARTEMIS

In Multi-Processing Embedded Systems

Eugenio Villar University of Cantabria

HDL simulation

Embedded System Architecture

Embedded SW simulation technologies

- HDL simulation
 - Very detailed model
 - High modeling cost
 - Late design steps
 - > Highest accuracy
 - Discrete delays
 - > Highest simulation times

ISS simulation

Embedded System Architecture

- ISS simulation
 - Detailed model
 - High modeling cost
 - Late design steps
 - > Cycle accuracy
 - > High simulation times

Virtualization

Embedded System Architecture

Embedded SW simulation technologies

- Virtualization (QEMU)
 - Detailed model
 - High modeling cost
 - Late design steps
 - > High simulation times
 - Faster than ISS

movl_T0_r1
ebx = env->regs[1]
mov 0x4(%ebp),%ebx

PowerPC (200 MHz) # r1 = r1 - 16 addi r1,r1,-16 mov 0x4(%ebp),%ebx # addl_T0_im -16 # ebx = ebx - 16 add \$0xffffff0,%ebx # movl_r1_T0 # env->regs[1] = ebx mov %ebx,0x4(%ebp)

Embedded SW simulation technologies

- Virtualization (QEMU)
 - Functional emulation
 - Rough timed simulation
 - i.e. 1 cycle per instruction
 - Large effort needed for more accurate modeling
 - Execution times
 - Power consumption
 - Caches
 - ...
 - Requires a specific Virtual Model for each processor

- Native simulation
 - Embedded code directly executed by the host
 - Good accuracy by back-annotation
 - Fast execution time

Native simulation based on HAL API

Virtual Model

Embedded System Architecture

Native simulation based on OS API

Virtual Model

Embedded System Architecture

Embedded SW simulation technologies

Code annotation in native simulation

Functional simulation based on code

Functional simulation based on abstract tasks

- Power estimation based on traces
 - Accurate but slow

ISS Model

Power estimation based on back-annotation

Same technology as with execution

Cache modeling

Embedded SW simulation technologies

Performance/Error comparison

	Technology	Time Estimation	Time & Power Estimation
Functional	Performance	5,000	N.A.
	Error	N.A.	N.A.
Native	Performance	1,000	500
	Error	1.3	1.4
Virtualization	Performance	200	T.B.M.
	Error	1.5	T.B.M.
ISS	Performance	10	1
(cycle-accurate)	Error	1.1 (DT)	1.1
HDL	Performance	1	0.1
	Error	1 (DE)	1

The association for R&D^{*} actors in the field of ARTEMIS

ARTEMIS SCOPE: SW Performance Modeling

- Key features
 - > Abstract OS modeling
 - Instruction cache modeling
- Novel features
 - > Physical memory accesses
 - Separate memory spaces
 - Design-space exploration

- Abstract OS modeling
 - > POSIX threads modeled as SC_THREADs
 - Scheduler model
 - > Time modeling
 - > RTOS services (POSIX & µCOS APIs)

ARTEMIS

SCoPE: SW Performance Modeling

- Instruction cache modeling
 - Similar to time modeling

struct icache_line { char num_set; char hit; }
...
static icache_line line_124 = {0,0};
static icache_line line_125 = {0,0};
static icache_line line_126 = {0,0};

- Physical memory accesses
 - Memory (re)map for passive accesses

pa=mmap(addr, len, prot, flags, fildes, off);

Access to peripherals

SW Simulation and Performance Analysis In Multi-Processing Embedded Systems - 32

- Design-Space Exploration
 - Configurable model

The association for R&D^{*} actors in the field of ARTEMIS

ARTEMIS SCOPE: Improvements for Scalopes

Dynamic Voltage-Frequency Scaling

Thermal modeling

System composition from IP-XACT components

WIN32 API

- Data cache model
- L2 model
 - > In both cases, physical addresses model needed

SCoPE as a system component

SCoPE as a system component

Spear modeling

Power-Line Communication (PLC) modeling

The association for R&D actors in the field of ARTEMIS

- SW simulation
 - Essential Design Technology
 - > HW/SW Embedded Systems
 - > At different design steps
 - Different modeling and simulation technologies
 - Various performance*accuracy products
- SCoPE
 - SystemC Native Co-Simulation Technology
 - Specially tuned to performance analysis
 - Design-Space Exploration

- Slides available at:
 - > www.teisa.unican.es/en/publicaciones
- SCoPE available at:
 - > www.teisa.unican.es/scope

The association for R&D^{*} actors in the field of ARTEMIS

Thank you for your attention

We value your opinion and questions