Software Simulation Technologies in Virtual Platforms

Eugenio Villar & Héctor Posadas
Microelectronics Engineering Group
University of Cantabria
Context

- HW/SW Embedded Systems Design Flow
 - HW/SW Simulation
 - Performance Analysis
 - avoiding slow design iterations
 - Design Verification
 - At the different abstraction levels
Agenda

- Motivation: Why SW performance analysis

- Software Simulation Technologies in Virtual Platforms
 - SCoPE: SW performance analysis for DSE

- Conclusions
Motivation

The MPSoC

- Multi-processing platform
 - ASIC
 - FPGA
 - Commercial multi-processing platform

- SW-centric design methodology
 - Most of the functionality implemented as Embedded SW
 - With ‘some’ application-specific HW
Motivation

- Computing needs Time
 - Edward A. Lee

- Computing needs Energy
 - Eugenio Villar
 - Still to be published
Motivation

Embedded SW performance analysis

- SW performance analysis based on SW simulation
 - At any abstraction level
- As an integral part of the MPSoC simulation
- Essential for MPSoC verification
 - At any abstraction level
- Essential for DSE
 - During architectural design
SW Simulation Technologies

- Embedded SW simulation

Requirements

Functional Simulation

Functional design

Executable Specification

SystemC

Embedded SW

Compilation

Embedded SW simulation

- Functional Simulation
- Native code simulation
- Fast Computation & Communication estimations
- Native co-simulation
- Accurate Computation & Communication estimations

Virtual Models

- ISS Discrete-Time Models
- HDL Discrete-Event Models

HW/SW Implementation

- IP Reuse
- Behavioral Synthesis
- RTL Synthesis

SW Simulation Technologies

- HDL simulation

Embedded System Architecture

HDL Model

Node i

- Application Code
 - Task 1
 - ...
 - Task n

CPU1 model
- CPU model
- Cache models
- Bus model
- DMA
- NoC if.
- ASHW
- memory

OS API
- HDS API
- OS API
- HDS API

CPU1
- CPU model
- caches
- Bus
- memory
- NoC if.
- ASHW
- DMA

Other Nodes

NoC model

NoC

VHDL
- Verilog

Other Nodes
SW Simulation Technologies

- ISS simulation

Embedded System Architecture

- **ISS Model**
 - ISSs
 - Node i
 - CPU1 Instruction Set model
 - Bus (TLM/RTL) model
 - Cache models
 - DMA
 - NoC if.
 - ASHW
 - memory
 - CPUp Instruction Set model
 - Cache models

- **Compilation**

- **Node i**
 - Application Code
 - Task 1
 - ... Task n
 - OS API
 - HsS API
 - OS
 - HsS
 - CPU1
 - CPUp
 - caches
 - Bus
 - memory
 - NoC if.
 - ASHW
 - DMA
 - Other Nodes

February 28, 2012
Virtualization

Embedded System Architecture

Virtual Model

NoC model

Node i

Application Code

Task 1

... Task n

OS API

HdS API

OS API

HdS API

CPU1

virtual model

Virtualization

SW Simulation Technologies

SW Simulation Technologies

- Virtualization (QEMU)
 - Detailed model
 - High modeling cost
 - Late design steps
 - Faster than ISS

Intel Core i5 (2.40 GHz)

```
# movl_T0_r1
# ebx = env->regs[1]
mov 0x4(%ebp),%ebx

# addl_T0_im -16 # ebx = ebx - 16
add $0xffffffff0,%ebx # movl_r1_T0

# env->regs[1] = ebx
mov %ebx,0x4(%ebp)
```

PowerPC (200 MHz)

```
# r1 = r1 - 16
addi r1,r1,-16

# ebx = env->regs[1]
mov 0x4(%ebp),%ebx

# ebx = ebx - 16
add $0xffffffff0,%ebx
```


February 28, 2012
SW Simulation Technologies

- Virtualization
 - Functional emulation
 - Rough timed simulation
 - i.e. 1 cycle per instruction
 - Additional effort needed for more accurate modeling
 - Execution times
 - Power consumption
 - Caches
 - ...
 - Requires a specific Virtual Model for each processor

- Commercial tools
 - OVP, FastModels, Cadence, Carbon, Synopsys (CoWare), etc.
SW Simulation Technologies

- Native simulation
 - Embedded code directly executed by the host
 - Good accuracy by back-annotation
 - Fast execution time
SW Simulation Technologies

- Native simulation based on HAL API

Virtual Model

- Application Code
 - Task 1
 - ... Task n

- OS API
- Hds API
- HAL
- Abstract CPU model
- TLM Bus model
- DMA
- NoC if.
- ASHW
- Memory

Other Nodes

NoC model

Embedded System Architecture

- Application Code
 - Task 1
 - ... Task n

- OS API
- Hds API
- HAL
- Abstract CPU model
- TLM Bus model
- CPU1
- Cache
- OS
- Hds
- Other Nodes

SW Simulation Technologies

- Native simulation based on OS API

Virtual Model

- Application Code
 - Task 1
 - Task n

- OS API
- HDS API
- Abstract model of OS & CPU
- TLM Bus model
- DMA
- NoC if.
- ASHW
- Memory

Embedded System Architecture

- Application Code
 - Task 1
 - Task n

- OS API
- HDS API
- HDS
- Abstract model of OS & CPU

- NoC model

February 28, 2012
Basic code annotation in native simulation

```
...  
Overflow = 0;  
s = 1L;  
for (i = 0; i < L_subfr; i++) {  
  Carry = 0;  
  s = L_macNs(s, xn[i], y1[i]);  
  if (Overflow != 0) {  
    break;  
  }  
  if (Overflow == 0) {  
    exp_xy = norm_l(s);  
    if (exp_xy<=0)  
      xy = round(L_shr (s, -exp_xy));  
    else  
      xy = round(L shl (s, exp_xy));  
  }  
mq_send(queue1, &xy, p, t);  
...  
```

Global variable

```
int Sim_Time = 0;  
Sim_Time += 20;  
Sim_Time += 25;  
Sim_Time += 15;  
Sim_Time += 10;  
Sim_Time += 10;  
wait included  
```
SW Simulation Technologies

- Functional simulation based on code

Virtual Model

- **Node i**
 - Task 1
 - Task n
 - Modeling API
 - Abstract model of OS, HdS & CPU
 - TLM Bus model
 - DMA
 - NoC if.
 - ASHW
 - memory

Embedded System Architecture

- **Node i**
 - Application Code
 - Task 1
 - Task n
 - Modeling API
 - Abstract model of OS, HdS & CPU
 - OS API
 - HdS API
 - OS
 - HdS
 - CPU
 - CPU
 - caches
 - NoC if.
 - ASHW
 - DMA
 - memory
 - NoC

February 28, 2012
Power estimation based on traces
- Accurate but slow
• Power estimation based on back-annotation

Virtual Model based on Native Simulation

- Same technique as with execution times

Global variable

```c
int Sim_Energy = 0;
```

- Best ratio accuracy/speed
SW Simulation Technologies

Performance/Error comparison

<table>
<thead>
<tr>
<th>Technology</th>
<th>Time Estimation</th>
<th>Time & Power Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>5,000</td>
<td>N.A.</td>
</tr>
<tr>
<td>Error</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Native</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>1,000</td>
<td>500</td>
</tr>
<tr>
<td>Error</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Virtualization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>200</td>
<td>T.B.M.</td>
</tr>
<tr>
<td>Error</td>
<td>1.5</td>
<td>T.B.M.</td>
</tr>
<tr>
<td>ISS (cycle-accurate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Error</td>
<td>1.1 (DT)</td>
<td>1.1</td>
</tr>
<tr>
<td>HDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Error</td>
<td>1 (DE)</td>
<td>1</td>
</tr>
</tbody>
</table>

- Rough approximate figures

February 28, 2012
SCoPE: SW Performance Estimation for DSE

- Key features
 - Abstract OS modeling
 - Instruction cache modeling
 - Data cache modeling
 - System power estimation

- Novel features
 - Physical memory accesses
 - Separate memory spaces
 - Configurability for Design-Space Exploration
 - Dynamic Voltage-Frequency Scaling
 - Thermal modeling
 - System composition from IP-XACT components
 - Win32 API
Instruction cache modeling

Similar to time modeling

```
... Overflow = 0;
s = 1L;
for (i = 0; i < L_subfr; i++) {
    Carry = 0;
s = L_macNs(s, xn[i], y1[i]);
    if (Overflow != 0) {
        break;
    }
}
if (Overflow == 0) {
    exp_xy = norm_l(s);
    if (exp_xy<=0)
        xy = round(L_shr (s, -exp_xy));
    else
        xy = round(L_shl (s, exp_xy));
}
... 
```

```
struct icache_line { char num_set; char hit; } 
...
static icache_line line_124 = {0};
static icache_line line_125 = {0};
static icache_line line_126 = {0};
... 
If (line_124.hit == 0) insert_line(&line_124);
If (line_125.hit == 0) insert_line(&line_125);
If (line_126.hit == 0) insert_line(&line_126);
```
SCoPE: SW Performance Estimation for DSE

- Data cache modeling
 - Use modified native addresses to get data variable addresses
 - Global array with all memory line status
- L2 modeling

```c
bool cache[dcache_size/line_size];

... Overflow = 0;
s = 1L;
for (i = 0; i < L_subfr; i++) {
    Carry = 0;
s = L_macNs(s, xn[i], y1[i]);
    if (Overflow != 0) {
        break;
    }
}
```
...
SCoPE: SW Performance Estimation for DSE

- System power estimation
 - Application code
 - Instruction counting from binary
 - OS & HW-dependent SW
 - Function power estimation
 - Caches
 - Counting memory accesses
 - Cache misses
 - Bus
 - Actual bandwidth
 - Cache misses
 - DMA accesses
 - HW accesses
 - HW & NoC
 - SystemC power models

SCoPE: SW Performance Estimation for DSE

- Design-Space Exploration
 - Configurable model

![Diagram of Design-Space Exploration]

Metrics
- Design parameters
- Pareto points

Tool
- M3Explorer

Classes
- Class 6: "Embedded SW Development in Virtual Platforms: Ready for Prime Time?", Embedded World 2012, Nuremberg
- February 28, 2012
SCoPE: SW Performance Estimation for DSE

- Dynamic Voltage-Frequency Scaling

![Diagram showing the SCoPE methodology and its components.](image-url)
SCoPE+: Improvements from Complex

- Performance estimation before partitioning

UML/Marte Specification
Functional, non Functional, Architectural

Design-Space Exploration Tool
(M3Explorer)

Abstract model of (HW+SW) Execution Platform

Application Code

Task 1
...
Task n

Architectural mappings

Pareto points

Metrics
Conclusions

- SW simulation and performance analysis
 - Essential Design Technology
 - HW/SW Embedded Systems
 - At different design steps
 - Different modeling and simulation technologies
 - Various performance*accuracy products

- SCoPE
 - SystemC Native Co-Simulation Technology
 - Specially tuned to performance analysis
 - Design-Space Exploration
Thank you for your attention

- Slides available at:
 - www.teisa.unican.es/en/publicaciones

- Open-source SCoPE available at:
 - www.teisa.unican.es/scope