

# PHARA()

### Parallel and Heterogeneous Architectures for Real-time

**ApplicatiONs** 

http://pharaon.di.ens.fr



#### **Objectives & Impact**

Develop two sets of techniques and tools, aimed at exploiting low-power capabilities of embedded SoCs with heterogeneous CPU, DSP and GPU cores.

- 1. Find the most adequate software architecture taking into account hardware constraints.
  - analyze the parallel structure of an application
  - automatically generate multi-processor code.
- 2. Adapt the platform performance (e.g. frequency & voltage) to consume only the required energy.
  - run-time reconfiguration manager
  - Iow power scheduler.

#### Software parallelization

The legacy software to be parallelized is analyzed to identify and display (in a highly compacted form) data dependencies and opportunities for parallelization.



#### **Design Flow** Inputs C/C++ files Simulation Performance Performance (1)Code Generato (1) Files simulator metrics LIML/ MARTE XML files Eclipse Parallelized Parallelization (2) (2) infrastructure C/C++ files tool Performance Simulation Performance 3 (3) metrics Files simulator Code Generator Platform Physical platform Platform OpenMP (4) Source Scheduler Run-time manager (4) Binary cross-compile Files

#### Code Generator

The complete SW stack to be executed in each node is automatically generated from the UML/MARTE models and the functional code.

The generator produces optimized code, including additional code providing parallelism and run-time optimizations.



#### **Demonstrators**

Three demonstrators from two domains: radio and image processing, are being produced.

#### Two radio demonstrators:

1. MAC layer implemented on a multicore ARM based platform 2. Physical layer (L1) with real-time reconfiguration and multi- 3. stream capabilities implemented on an ARM-based platform with a specialized DSP



### Image processing

#### demonstrator:

Advanced 3D stereoscopic application with real-time and high definition constraints targeting the automotive domain for human and obstacle detection



Project number 288307 / 36 Months

THALES

3.3 "New paradigms for embedded systems, monitoring and control towards complex system engineering"

imec





Florian.broekaert@thalesgroup.com

**Vector** Fabrics

## A revolutionary approach to fully automatic synthesis of embedded system software



### What is eSSYN?

eSSYN is a software synthesis tool that automatically generates, platform specific executable binaries from a component based model of a software application and a simple model of the target hardware platform (supporting complex multicore heterogeneous platforms).

### Who can benefit from eSSYN?

Anyone willing to boost the productivity of software design for embedded systems. Specially those involved in architectural design of embedded systems, including selection of target platform, mapping of software modules to available resources (GPP, DSP, GPU,...), code parallelization, application migration to new platforms, etc.

### What is the main benefit of eSSYN?

eSSYN is an incredible effort saver for common system level tasks. For instance, splitting an application into two executables and mapping those to two cores of a platform can be done, from start to end (binaries) in five minutes. Doing that by hand is a matter of days.







#### Universidad de Cantabria

TEISA Department (GIM Group) Avenida Los Castros 39005 Santander Spain

#### email: essyn@teisa.unican.es



### Platform Independent Model

A component based model of the application is generated by the user using a simple semantic (even a wizard is available making it extremely easy to generate). This model is independent of the target HW platform and therefore is reusable among different platforms. As part of the component description, functional C, C++ or OpenCL source code is provided (actually several alternative implementations of the componet funcitionality may be included) and a description of the component interfaces. Last, a system view showing the connections among components complete the platform independent model of the application.



### **Platform Specific Model**

eSSYN allows the user to play with different mappings of components into executables though a convenient GUI. Similarly each executable can be assigned to one of the microprocessor cores, DSP or GPU available in the hardware platform. With a simple click and drag the user can completely redefine the mapping of the application and in five minutes obtain new binaries for the new implantation, exploring this way different parallelisms, resource usages etc.

Equally powerful is the capability to map an application to different platforms in a similar way. eSSYN only needs a very simplified model for each platform to test, an upgraded System Architecture as shown below and with the click of a button a new binary is generated for the new platform.



Want to know more about eSSYN? Contact eSSYN team for a hands on demo and get to know the new way to generate complete embedded software systems in minutes.









## SOFTWARE SYNTHESIS FOR HETEREOGENEOUS EMBEDDED SYSTEMS

University of Cantabria



## Starting point

PHARA(



03/04/2014

## Multiprocessing and heterogeneous platforms







### **Texas Instruments OMAP Evolution Time**

| Connectivity             | Advanced (    | Connectivity   | Ext Memory I/F |  |
|--------------------------|---------------|----------------|----------------|--|
| FC x2                    | 10100 Ethemet | L2 Sellch      | NAND           |  |
| SPI x 4                  | IEEE 1508 x2  |                | BCH 20-bit     |  |
| UARTx6                   | CAN x2        | HS USB Phy x 2 | DDRg           |  |
| Up to 124 GIPIO          | -             | -              | mDDR           |  |
| MMC:/SD x 4              |               | 1X28<br>26EJ-S | LV-00R2        |  |
| Analog<br>12-bit ADC x 8 |               | 454MHz         |                |  |
| 2Meps ADC x 1            | 16K I         | 32K D          | 128KB SFAM     |  |
| Thermal<br>Protection    | Cache         | Cache          | 128KB ROM      |  |
| Power                    | Sec           | User 1F        |                |  |
| Management               | HAD           | OTP AES Key    | LCD Controller |  |
| DC/DC - 4.2V             | 128-bit AES   | SHA-2 Heating  | Touchacreen    |  |
| LDO x4                   | Standar       | Scaling        |                |  |
| Battery<br>Charger       | Timer x 4     | PWMx8          | Alpha Bending  |  |
| Audio                    | Watch Dog     | DMA            | Retation       |  |
| PS+2                     | System        | Color Space    |                |  |
| SPOIF Te                 | ETM           | JTAG           | Conversion     |  |

| System Control               |                             | Connectivity                 |                 |                        |  |
|------------------------------|-----------------------------|------------------------------|-----------------|------------------------|--|
| Secure JTAB                  |                             | ARM Certer <sup>24</sup> -85 |                 |                        |  |
| Power Mgrit                  | 32 KB                       | 32 KB 32 KB 256 KB           |                 | HE MMC/<br>SDID x 4    |  |
| PLL + 3<br>Olock Reset       | E-Cashe<br>Neor             | D-Cashe                      | L2-Ceche<br>ETM | CSPI HS x 2/<br>LS x 1 |  |
| Timers                       | Vactor Floating Point Linit |                              |                 | UART + 5               |  |
| Timirs 2                     | 2                           |                              |                 | PC+3                   |  |
| FIRMA 2                      | Multimedia                  |                              |                 | 35575 x 3              |  |
| Watch Dog                    | OpenGL ES                   | OpenGL ES 2.3 OpenVG 1.1     |                 | 1-Wile                 |  |
| because of the second second |                             |                              |                 | Atta-6                 |  |
| Memory                       | Hat                         | Hardwate Video Codecs        |                 |                        |  |
| ROM 32 KE                    |                             | H0729 TV-Out                 |                 |                        |  |
| RAM 128 KB                   |                             |                              |                 | USIL HS Host x 3       |  |
| Security                     | lmag                        | Image Processing Unit        |                 |                        |  |
| Sahara v4                    | Ro                          | Resizing and Blending        |                 |                        |  |
| Trat/Zona*                   |                             |                              |                 | Keyped                 |  |
| RTIC                         | in the                      | Inversion and Rotation       |                 |                        |  |
| BCC v2                       | 10                          | arcago Exhancement           |                 |                        |  |
| SHIC                         |                             | Carnora                      |                 |                        |  |
| 171.023                      |                             | Tringt DMA                   |                 |                        |  |

**Freescale IMX Evolution Time** 

i MX 6Quad Applications Processor Block Diagram

| System Costrol              | CPU Platern                                                        |                                                      |                          | Connectivity             |                                |
|-----------------------------|--------------------------------------------------------------------|------------------------------------------------------|--------------------------|--------------------------|--------------------------------|
| Becare JTAG                 |                                                                    | Guad ASM* Certar** AP Cera                           |                          | MVC 44                   | USB2 HSIC                      |
| PLL ONL                     |                                                                    | SZ ND I-Gaster SZ ND D-Gaster                        |                          | 10 3.0 KT                | Heat v3                        |
| Clock and Flesset           | per Core                                                           |                                                      | Per Core<br>FTM per Core | MMC44/                   | MPHHE                          |
| Smart CMA                   | NEON per C                                                         | NEON per Core                                        |                          | LIART at                 | SPOF                           |
| ONUX                        | 1 MB L                                                             | 1 MB L3 Cashe + VFPv3                                |                          |                          | Tayfile                        |
| Tener sll                   | Mattimedia                                                         |                                                      |                          | C Mispa<br>PC x3,        | PCIe 2.0<br>0-Lanei            |
| PWM of                      | Hartware Dr                                                        | Hardware Graphics Accelerators<br>30 Vector Graphics |                          |                          |                                |
| Waluh Duy AZ                | 20                                                                 | - 10                                                 | and a state of the       | 254, 19/99               | FlexCAN x2<br>MLB150 +<br>ETCP |
| Power Management            | Video Codeca<br>1099p30 Dru/Der                                    |                                                      | Auto                     | 12                       |                                |
| Power Temperature<br>Montor | Total Concernence                                                  |                                                      | AGENU .                  | 3.9V GPIO<br>Keypart     | <ul> <li>IEEE* 1588</li> </ul> |
| Internal Memory             |                                                                    | Amonging Processing Unit                             |                          |                          | Library and                    |
| NM NGR                      | Resarg and Banding Image Enhancement<br>Investion/Rutation         |                                                      |                          | 8-ATA and<br>PHIY 3 Gops | ROHAD Critt                    |
| Geourity                    | -                                                                  | _                                                    |                          |                          | LP-DORL                        |
| PND Becury Dest             | Display and Camera interface<br>HDMI and PHY 24-bit RQB, LVDB (x2) |                                                      |                          | LISED OTS                | 0085                           |
| natiZone Second 010         | MIPLOS                                                             |                                                      | 20-bit CSI               | LISEL HOLE               | 132/04,<br>533 MHz             |
| Cations States              | MIFI CBI2                                                          |                                                      |                          | and PHY                  |                                |



3 /



## Stereovision algorithm





Confidential information under the property of the PHARAON FP7-288307 project partners. All rights reserved.

Confidential information under the property of the PHARAON FP7-288307 project partners. All rights reserved

## Platform-independent model (PIM)

• Reusability

### ♦ Memory partition → Executable

• Data protection, communications, multi-critic...

## Heterogeneous platforms

• CPUs + DSP/GPU



## **Stereovision Execution Flow**





PHARAON project number FP7-288307

Tool flow





PHARA

Confidential information under the property of the PHARAON FP7-288307 project partners. All rights reserved





- Project Management
- Reusability
  - Platform-independent code
- Parallelism



- Reduces in-depth knowledge of platforms
  - Reduce re-engineering effort

