An Efficient Joint Analytical and Simulation-based Design Space Exploration Flow for Predictable Multi-Core Systems

Goal:
Faster and More Efficient design of Time Critical and Mixed-Criticality Systems

Challenge:
Huge design space, critical time constrains and optimization goals

Results:

- **Significantly Faster Design Time**
 - Simulation-based exploration would take weeks!
 - 90% Cut of Original Design Space through the Analytical DSE in minutes
 - It would still take 14h!
 - ARS heuristic enables saving 80% of the simulations with a negligible impact in the search of the Pareto Set

- **More efficient Designs**
 - New solutions revealed after JAS-DSE vs A-DSE (>30%, conf1: 11 out of 32, conf2: 14 out of 36)
 - Thousands of solutions disappear as optimum ones

- **Worst-case analysis prevents accurate decisions for average optimization**
 - Avg. Cycle <50μs ⇒ 3PES, and not 4 PES, are required

Solution:

Adaptive Random Sampling
Enables heuristic search both in Analytical and Simulation-based DSE

Implementation for Predictable MPSoC Design

- **Application to a Voice Activity Detection (VAD) system** (Part of GSM vocoder)
- **Application**
- **Platform**
 - Up to 6 Processing Elements
 - 2 TDMA bus configurations with up to 8/20 slots
- **Constraints**
- **Goals**
 - Throughput, Avg. Load, #PEs

Work funded by the Excellence Post-doctoral Position I-2011-0646 granted by the School of Information and Communication Technology of the KTH Royal Institute of Technology, Sweden; the CIFAR Chair in Information Theory sponsored by the Canadian Institute for Advanced Research (CIFAR); and by the Spanish Ministry of Industry, Energy and Tourism through the grant ART-010000-2012-3.