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Abstract—In the fields of high performance computing (HPC)
and embedded systems, the current trend is to employ hetero-
geneous platforms which integrate general purpose CPUs with
specialized accelerators such as GPUs and FPGAs. Programming
these architectures to approach their theoretical performance is
a complex issue. In this article, we present a design methodol-
ogy targeting heterogeneous platforms which combines a novel
dynamic offloading mechanism for OpenMP and a scheduling
strategy for assigning tasks to accelerator devices. The current
OpenMP offloading model depends on the compiler supporting
each target device, with many architectures still unsupported
by the most popular compilers, such as GCC and Clang. In
our approach, the software and/or hardware design flows for
programming the accelerators are dissociated from the host
OpenMP compiler and the device-specific implementations are
dynamically loaded at runtime. Moreover, the assignment of tasks
to computing resources is dynamically evaluated at runtime, with
the aim of maximizing performance when using the available
resources. The proposed methodology has been applied to a video
processing system as a test case. The results demonstrate the
flexibility of the proposal by exploiting different heterogeneous
platforms and design particularities of devices, leading to a
significant performance improvement.

I. INTRODUCTION

Heterogeneous computing architectures which combine gen-
eral purpose multi-core CPUs and dedicated accelerators (e.g.
GPUs and FPGAs) are becoming more and more common
in both large data centers and embedded systems as they
achieve better energy efficiency than CPU-only architectures
[1]. Several programming models have emerged to help devel-
opers program these hardware accelerators, such as OpenCL
[2] and CUDA [3]. Also, powerful and user-friendly synthesis
tools (e.g. Vivado HLS from Xilinx) are available to generate
FPGA-based accelerators from high-level languages, such as
C, C++ and OpenCL.

A proper design methodology, which allows to identify the
algorithm bottlenecks and efficiently map the set of tasks to
the available computing resources, is of primary importance
for high-performance execution of programs. Research on
general-purpose multi-core CPU scheduling is abundant. A
large number of scheduling heuristics targeting heterogeneous
systems have also been presented in the literature. To cite

This work has been funded by FEDER/Ministerio de Ciencia, Innovacién
y Universidades — Agencia Estatal de Investigacion/TEC2017-86722-C4-3-R,
also under the FitOptiVis Project (ECSEL2017-1-737451), which is funded
by the EU (H2020) and Ministerio de Ciencia, Innovacion y Universidades.

just a few, Topcuoglu et. al in [4] presented some scheduling
algorithms with the objective of simultaneously meet high
performance and fast scheduling. In [5], Augonnet er al
developed various strategies that could be selected at runtime,
outperforming static scheduling. In this paper, a methodology
targeting acceleration of applications over heterogeneous ar-
chitectures is presented. Our approach combines design-time
and run-time strategies and features a simple heterogeneous
scheduling algorithm.

After a heterogeneous scheduling is decided, tasks have
to be moved to the corresponding computation resources.
Computation offloading is a programming model in which the
performance of a code is improved by transferring computation
kernels from a host machine (e.g. CPU) to an accelerator
device (e.g. GPU). OpenMP [6] is a well known API which
is extensively used to program symmetric multiprocessor
architectures (SMP). Support for offloading and a number
of dedicated directives to define target regions and devices
were introduced back in 2013 with the OpenMP 4.0 version.
In order to use these offloading capabilities, the OpenMP
compiler on the host machine must support code generation
for the target accelerator device. The main drawback is that
many architectures are still unsupported in the most popular
compilers, such as GCC [7] and Clang [8]. Some previous
researches have implemented code offloading from OpenMP
annotated programs to accelerator devices. Most of them
integrate offloading support for a certain architecture into the
LLVM compiler infrastructure. For instance, Bertolli et al. [9]
delivered offloading support for OpenPower systems targeting
NVIDIA GPUs. Also, different optimization strategies were
implemented into Clang with the aim of achieving CUDA-like
performance. In [10], Antao et al. generalize the previous ap-
proach to allow compilation for multiple host and device types
and describe their initial work to support code generation for
OpenMP device offloading constructs in LLVM/Clang. Pereira
et al. [11] designed an open source compiler framework
based on LLVM/Clang which automatically converts OpenMP
annotated code fragments to OpenCL/SPIR kernels. Finally,
a proof-of-concept implementation of OpenMP offloading to
FPGA devices integrated into the LLVM infrastructure was
presented by Sommer et al. [12]. Compared to previous work,
our proposal describes an alternative offloading methodology
in which the device-specific compilation is independent from
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Fig. 1. Overview of the proposed design and execution methodology.

the OpenMP host compiler, thus requiring little compiler
support and integration effort.

The rest of the paper is organized as follows. In Section II,
the proposed methodology for accelerating applications over
heterogeneous platforms is presented. Section III describes
how tasks are distributed on the various processing units
of a heterogeneous platform. In Section IV, the proposed
methodology is applied to a case study video application and
performance numbers are provided. Finally, the conclusions
are drawn in Section V.

II. METHODOLOGY

This work introduces a novel methodology to efficiently
accelerate applications over heterogeneous architectures. As
explained in the previous section, one disadvantage of the
current OpenMP offloading model is the dependence on the
OpenMP host compiler to support each particular accelerator
device architecture. In addition, this scheme does not allow
the designer to manually optimize the device-specific imple-
mentations to achieve an effective performance improvement
on the application. The key idea of our approach consists
on dissociating the device-specific processes (software com-
pilation and/or hardware synthesis) from the OpenMP host

compiler. Since implementations for accelerator devices are
generated from an independent design flow, a flexible runtime
infrastructure has been developed to dynamically load and
manage all available device implementations at runtime.

The design flow for the proposed methodology is summa-
rized in Fig. 1. Consider a computing system with a host
device (e.g. CPU) connected to one or multiple accelerator
devices (e.g. GPUs, FPGAs). The starting point is a C/C++
source code which may be serial or parallel with various
OpenMP threads concurrently executing different tasks. As
shown in the left part of the figure, the application is profiled in
order to obtain the execution time of the different tasks on the
CPU of the target platform. If implementations corresponding
to accelerator devices are available, their execution time is
calculated as well. These results can be used to establish an
a priori static scheduling in which tasks are associated to
computing resources with the aim of minimizing the overall
execution time.

The right part in Fig. 1 corresponds to compilation and
execution processes. The original C/C++ source file must
be compiled along with a library which provides a runtime
infrastructure that allows the use of the proposed methodology.



The binary executable for the host CPU is generated. Also, the
source code of the program regions marked for offloading can
be extracted and used to obtain a device implementation (e.g.
by using a high-level synthesis tool to generate an FPGA-based
accelerator). At this point, the designer is able to manually
optimize this code or even provide an alternative source for
the design flow, such as VHDL/Verilog RTL descriptions
or even third party IP cores for FPGA. A proof-of-concept
implementation of OpenMP offloading to FPGA devices has
already been shown in [12], in which Vivado HLS is used
to generate the hardware. The authors claim that synthesis
directives (pragmas) can be added to the original code to guide
the HLS tool. However, the code cannot be modified with the
aim of optimizing the generated hardware (e.g. buffers must
be explicitly described in C/C++). As we show in Section
IV, a deep understanding of the synthesis tool and applying
both code modifications and synthesis directives are mandatory
requisites to produce an efficient implementation.

Once that device implementations have been generated,
some device-specific files may be produced, such as a bit-
stream to configure the programmable logic of an FPGA
device. On the other hand, some executable code for the
host CPU is generated (e.g. software in charge of initial-
izing hardware devices, transferring data to/from devices or
launching the execution of offloaded tasks). This code is
compiled into a shared object (i.e. a dynamic library). While
the application executes, the developed runtime infrastructure
is able to dynamically identify and load all the available
implementations. A data table is built at runtime with informa-
tion about the available devices and implementations, which
includes data (such as the associated device, the number and
type of arguments and performance numbers) and pointers
to the executable code itself. The runtime system is able to
provide dynamic task allocation while the application executes.
The above makes it possible to perform a dynamic scheduling.
More details on this are given in Section III. The flexibility of
this approach allows to run the same application executable
binary on platforms where devices are added/removed, or
machines shared between many applications where devices
may be busy. Moreover, new device implementations can be
developed after compilation of the host code.

The main advantages of the presented methodology are:
(1) multiple device architectures (such as GPUs and FPGAs
from different families) can be used to offload program tasks,
without depending on the compiler supporting each particular
architecture; (ii) great flexibility is provided to the designers by
enabling code modifications/optimizations and language/tool
selection, with the aim of generating efficient implementations;
and (iii) the runtime infrastructure allows to dynamically
allocate tasks to computing resources after compilation of the
host code, even if new implementations are loaded or the
heterogeneous platform has changed.

III. GENERIC TASK SCHEDULING

The offloading methodology presented in the previous
section allows to dynamically map tasks to the available

TABLE I
TABLE OF TASK IMPLEMENTATIONS HANDLED BY THE RUNTIME.

CPU Device 1 Device N
Task 0 Impl. 0 Impl. 1 Impl. N
Task 1 Impl. 0 Impl. 1 Impl. N
Task K Impl O Impl 1 Impl N

computational resources at runtime. In this section, a simple
yet efficient heterogeneous scheduling strategy integrated into
our runtime infrastructure is explained. While the application
executes, the available device-specific implementations are dy-
namically loaded and a table of implementations for different
tasks (i.e. potentially offloaded regions) is built, as represented
in Table I. Every task has a CPU implementation available
(known as defaulf), corresponding to the first column in the
table, and optionally device implementations for accelerators.
Every element in the table is associated with a data structure,
including metadata (such as target device and performance
information used by the scheduler) and a pointer to the
executable code.
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Fig. 2. Example execution flow of an application. Computational tasks can
be potentially offloaded to accelerator devices.

Consider the execution flow of a generic application shown
in Fig. 2, with execution time T; given by (1). Then, the tasks
are scheduled as follows. When a single thread is running
on the system and a task is selected to be offloaded by the
programmer, the implementation with the lowest execution
time available is executed on the corresponding processing
unit. When multiple threads concurrently execute different
tasks, the most computationally complex task is given pri-
ority and accelerated on the hardware device associated with
the fastest implementation available. The successive slowest
implementations are sent to the devices associated with the
fastest implementation available, given that the required com-



putational resource is free. For instance, a GPU computing
another task with higher priority would not be considered, but
several tasks could be offloaded to the same FPGA device.
The execution time of a set of concurrent tasks is limited
by the slowest computation. When no accelerator devices are
available/free, the default CPU implementation is executed.

T, = T5’1 —|—T52—|—maX{Tpl,Tp2,...,TpN}—|—---—‘rTSN @))

IV. CASE STUDY

In this section, a proof-of-concept of the proposed method-
ology is presented. In order to evaluate the runtime infrastruc-
ture, two heterogeneous architectures have been used: a Zynq
UltraScale MPSoC (CPU-FPGA) and a PC (CPU-GPU).

A. System Description

As a test case, a commonly used video processing system
is considered (see Fig. 3). Next, the different processing tasks
are detailed.

1) RGB to grayscale conversion: First, an RGB color image
(3 bytes per pixel) is read from a database. Then, the image
is converted to grayscale (1 byte per pixel) by forming a
weighted sum of the R, G and B color components.

2) Noise removal: A median filter is used to achieve a
reduction of noise while preserving the edges in the image.
This step obtains each pixel as the median value of a 3x3
pixel window centered on the considered position in the image.
The median value is computed by sorting the elements in the
window into numerical order and selecting the one on the
middle position.

3) Edge detection: Then, a Sobel filter is applied as an
edge detection algorithm. Two 3x3 kernels are convolved with
the input image to get horizontal and vertical gradients. At
each pixel in the image, the horizontal and vertical gradients
are combined to obtain the gradient magnitude. The 8 most
significant bits of the gradient are kept to produce a single
channel grayscale image.

4) Scaling: In order to improve the visibility of the gradient
magnitude images, a scaling which takes pixels closer to either
white or black is performed. Intermediate pixel values in the
range (0,128) are moved towards O (black). Intermediate pixel
values in the range (128,255) are moved closer to 255 (white).
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Y
Show Image [« Scaling < Edge Detection

Fig. 3. Block diagram of the implemented video processing chain.
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Fig. 4. Parallel implementation scheme for the video processing system.

B. System Implementation

As a starting point, an all-software version of the previous
system has been developed. The proposed implementation is
parallelized using OpenMP with four threads running on the
host CPU, which concurrently executes the four processing
tasks. Consequently, a pipeline is established with four images
being processed at the same time. Since the output image of
each stage is used as the input image of the following step,
and the four stages are executing at the same time, a double
buffer is used to communicate the modules. When a task (e.g.
edge detection) is reading the first buffered imaged produced
by the previous task (e.g. median filter), that previous task is
writing in the second image buffer. As a consequence, memory
coherence issues are avoided. The described implementation
is depicted in Fig. 4.

C. Performance Evaluation

A detailed timing analysis is carried out in order to identify
the bottlenecks of the all-sofware system on the platforms of
interest. On the one hand, the Xilinx ZCU102 board features
a Zynq MPSoC which integrates a 1.20 GHz quad-code ARM
Cortex-AS3 processor. On the other hand, the PC features a
2.30 GHz quad-core Intel Core i7-3610QM processor. Tables
IT and III summarize the CPU-only execution time of the
previously described video processing tasks on these two
platforms. The results show that the median filter stage has
the biggest computational load on both architectures.

TABLE 11
DETAILED CPU EXECUTION TIME ON XILINX ZCU102

RGB to Grayscale 0.018 s
Median Filter 0.927 s
Edge Detection 0.099 s
Scaling 0.048 s




TABLE III
DETAILED CPU EXECUTION TIME ON PC

CPU Quad-core 2.30 GHz Intel Core
i7-3610QM
RGB to Grayscale 0.021 s
Median Filter 0.536 s
Edge Detection 0.062 s
Scaling 0.010 s

D. Device-Specific Implementations

In the previous section, some bottlenecks were detected
in the system, mainly the median filter and the edge detec-
tion (Sobel filter) algorithms. Device-specific implementations
have been designed in order to accelerate these functions on
dedicated hardware.

1) GPU Implementations: OpenCL kernels (i.e. functions
describing parallel execution on the device) have been gener-
ated to offload the median filter and the Sobel filter to a GPU.
OpenCL kernels are defined in a C-based language called
OpenCL C.

2) FPGA Implementations: Xilinx SDSoC has been used
to produce the driver functions for the host, which are dynami-
cally loaded by the runtime, and the files to configure the Zynq
MPSoC device. Within the design flow, Vivado HLS is used by
SDSoC to generate hardware IP cores from C/C++. Although
high-level synthesis tools promise software-like development
to generate hardware from pure high level code, the designer
is usually required to significantly change and adapt the code
in order to obtain an efficient implementation. Since one of
the key points of our offloading methodology is allowing the
designer to intervene in the design process for programming
the accelerators, we will next justify this need with some
synthesis details. SDSoC automates the connection of the
generated HW IPs with the processing system through an
AXI4 bus. The user IPs are connected to an AXI DMA [P
to read from/write to the main system memory.

Although computation intensive algorithms such as the
median and Sobel filters are natural candidates for imple-
mentation in hardware, synthesizing the original CPU-oriented
C/C++ code generates cores with throughputs below 1 frame
per second. The performance estimates of the synthesized IP
cores are summarized in tables IV and V. As we show, good
C/C++ code for a CPU or even a GPU may generate a poor
implementation for an FPGA or ASIC. The low performance
is due to the lack of an efficient memory architecture designed
for such memory intensive algorithms as the ones we are
facing. The high-level synthesis tool does not automatically
introduce or manage memory buffers. The hardware designer
must explicitly describe those structures in the code so that
they are generated into the RTL.

In order to boost the performance, a double buffer memory
architecture has been implemented, as suggested in [13] and
described in Fig. 5. Both algorithms compute with data from
a 3x3 pixel window. When pixels are sent to the hardware IP

TABLE IV
MEDIAN FILTER HW IP PERFORMANCE ESTIMATES AFTER HIGH-LEVEL
SYNTHESIS
. . HW-oriented
Input to Vivado HLS Ordinary C/C++ C/Cat
Image resolution 1920x1080 1920x1080
Clock period 3.08 ns 4.58 ns
Clock cycles 360810722 2073609
IP throughput 0.90 fps 105.29 fps
TABLE V
SOBEL FILTER HW IP PERFORMANCE ESTIMATES AFTER HIGH-LEVEL
SYNTHESIS
. . HW-oriented
Input to Vivado HLS Ordinary C/C++ C/Ctt
Image resolution 1920x1080 1920x1080
Clock period 3.85 ns 4.52 ns
Clock cycles 360810965 2073642
IP throughput 0.72 fps 106.69 fps

in the FPGA logic, they are pushed into a buffer capable of
storing three lines of pixel data which acts as a shift register.
Secondly, a window buffer which stores 9 elements from the
three buffered lines is used. The algorithms compute with the
elements of the window. A synthesis directive is applied to
implement the window memory as flip-flops, so that all pixels
are available to compute in a single clock cycle. The three-
line buffer has been defined as three arrays and implemented
as three different dual-port block RAMs since it requires
simultaneous read and write access. By combining proper
synthesis directives with the described code modifications, the
throughput achieved by the generated hardware goes above
100 frames per second (x117 with respect to software-like
code synthesis).

Window Buffer 3-Line Buffer
REG | REG | REG Block RAM
REG | REG | REG Block RAM
REG | REG | REG f--------- » Block RAM

Memory buffers move
across the image.
Explicitly described in
C/C++.
Image width

Fig. 5. Memory structures implemented to get efficient HLS implementations.

E. Experimental Results

The system has been tested over two heterogeneous ar-
chitectures: (i) a Xilinx ZCU102 board featuring a Zynq



TABLE VI
OVERALL PERFORMANCE ON XILINX ZCU102 - ZYNQ MPSoC ARM
CORTEX-AS53 CPU + FPGA

Implementation Frame Rate Speed-up
Serial (CPU-only) 0.92 FPS x1.0
Parallel (CPU-only) 1.13 FPS x1.2
Parallel + Offloading (FPGA) 21.36 FPS x23.2
TABLE VII

OVERALL PERFORMANCE ON PC - INTEL CORE 17-3610QM CPU +
NVIDIA GT630M GPU

Implementation Frame Rate Speed-up
Serial (CPU-only) 1.60 FPS x1.0
Parallel (CPU-only) 1.84 FPS x1.2
Parallel + Offloading (GPU) 15.31 FPS x9.6

UltraScale MPSoC with 1.20 GHz 4 cores ARM Cortex-A53
CPU integrated with FPGA programmable logic and (ii) a
laptop PC with 2.30 GHz 4 cores Intel Core 17-3610QM CPU
and a NVIDIA GT630M GPU, both running Linux.

Tables VI and VII summarize the overall execution times
on these platforms for different implementations of the test
case. Serial implementation corresponds to the all-software
version of the diagram in Fig. 3 executing on the CPU (single
thread). Parallel implementations correspond to the diagram
in Fig. 4, which concurrently executes 4 threads on the host
(CPU). Parallel implementation with offloading means that
tasks with available implementations are sent to accelerator
devices by the runtime infrastructure. In the case of the Zynq
MPSoC, the median and Sobel filters have been offloaded to
the FPGA logic. In the case of the PC, the median filter has
been moved to the GPU (note that the GPU is not available for
any other concurrent task). The processing has been applied to
images with 1920x1080 resolution and the results are averaged
over 100 executions. Final implementations with offloading
show significantly lower execution times than either serial or
parallel CPU-only versions. When compared to serial CPU
implementations, a x9.6 speed-up was achieved on PC (CPU-
GPU) and a x23.2 speed-up was reached on Xilinx ZCU102
with the Zynq SoC (CPU-FPGA).

V. CONCLUSION

This paper introduces and evaluates techniques for accelera-
tion of OpenMP-annotated applications in heterogeneous plat-
forms. This work overcomes some limitations of the standard
OpenMP offloading model (e.g. limited devices are supported
by popular compilers, like GCC and Clang). New features
are also incorporated, such as dynamic loading of accelerator
implementations and dynamic mapping of tasks to computing
resources. Our proposal requires that the design and execution
flows follow a new offloading methodology which dissociates
the accelerator specific compilation and/or synthesis from
the host OpenMP compiler. In order to enable the use of
the above methodology and scheduling features, a runtime

infrastructure has been developed. The presented approach
has been evaluated using a video processing system as a test
case over two heterogeneous architectures. The application has
been parallelized with multiple OpenMP threads running on
the host CPU. In the algorithm, some bottlenecks have been
detected and offloaded (i.e. moved) to accelerators at runtime,
depending on the available resources. When using FPGA
accelerators, it has been proven the importance of letting the
hardware designer modify the code taken by the HLS tool
in order to generate efficient implementations. Analyzing the
overall application performance against the starting CPU-only
implementation, x9.6 and x23.2 speed-ups were achieved on
PC (CPU-GPU) and Xilinx ZCU102 with the Zynq SoC (CPU-
FPGA), respectively.
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