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Abstract—The increasing number of space missions has led
to the accumulation of space debris, becoming a problem to
be taken into account. A possible solution to eliminate rubble
in space consists of launching satellites capable of detecting
these obstacles and then destroy them. This paper presents a
system for decomissioned satellite identification and capture.
The system was developed with a methodology which provides
support for component management as well as runtime system
reconfiguration. The proposed solution is able to reconfigure itself
at runtime with different configurations that provide different
performance and energy consumption strategies to adapt to the
environmental conditions during a space mission.

Index Terms—runtime reconfiguration, space debris, satellites,
object recognition, component-based

I. INTRODUCTION

Man began his adventure in space with the launch of
the Sputnik satellite in 1957 by the Russian Federal Space
Agency. Since then, a large number of countries have launched
satellites, probes and spacecraft, reaching more than 8,300
objects/vehicles in 2018.

Some of these objects have returned to Earth and disinte-
grated upon entering the atmosphere. But, many others have
remained in orbit or disintegrated into small fragments that
orbit around the Earth at speeds around 27,000 km/h. All these
fragments, which vary from the size of a grain of rice to a
truck, are called rubble or space debris.

The presence of fragments travelling at these speeds at
altitudes where satellites usually orbit for navigation, com-
munication or observation is of concern to space agencies. A
small object at such high speeds could disable a subsystem of
a satellite if impacting specific areas.

In recent years, concern about space debris has increased
in space missions. Various types of space debris are found
floating in space at different distances from Earth. Although
it is unlikely for a spacecraft to hit any of this debris, the
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Fig. 1. Micro-impact found in a space shuttle window [1]

increasing number of mega-constellations of more than 100
satellites increases the probability of a collision.

There is such a high density of space debris in some
orbital planes that the probability of being hit is high. A clear
example of this are the impacts received in each NASA space
shuttle mission [1]. After each mission, elements such as the
windows or the radiators placed on the doors were inspected
in detail with microscopes, since a micro crack could lead to a
catastrophe. Figure 1 reflects one of the micro-impacts found
on one of the windows of a space shuttle.

Overall, NASA found more than 1,000 impacts on the
shuttle over its years of operation [1]. This caused an average
of 2 window changes as shown in Figure 1 after each mission.

The biggest contribution to space debris are satellites. Most
satellites that are sent into space have a lifespan of 5 to 15
years. Once they stop being functional, they become part of
the set of objects that make up space junk. In total, 24% of
objects that are orbiting the earth are satellites, but only a third
of these are in operation.

These satellites lose altitude over time, causing them to
eventually disintegrate upon entering the atmosphere. This can
take years from the moment it ceases to be functional until it
finally falls to Earth. During this period of time, a series of
events can occur that increase the number of objects that make
up the space debris cloud.

Since 1961, more than 290 fragmentation events of orbiting
objects have been recorded. In most cases these occur due
to explosions caused by the satellites themselves or the upper
stages of rockets. The main cause of these explosions is related
to the residual fuel that remains in the tanks or in the pipes.

Over time, the internal and external mechanical integrity of



the satellite is reduced due to minor impacts or deterioration of
materials. This can lead to leaks and/or the mixing of different
fuel components causing an explosion. If the explosion is large
enough it can destroy the satellite completely and scatter a
large number of fragments of different sizes in many directions
and at widely varying speeds [2].

II. MOTIVATION

Different space agencies have started to think of various
solutions to free the orbits of space debris. One possible
approach is to launch satellites capable of capturing space
debris and, at the end of the mission, burn with it in the
atmosphere. In this work, a video unit capable of identify-
ing satellite models has been designed and implemented. A
satellite equipped with this system could be able to identify
satellites that are no longer working and capture them to burn
them when they fall to earth or redirect them to a “graveyard
orbit”.

The system presented in this work is made up of various
software components with functionalities including video pro-
cessing, image coding, recognition and positioning of objects,
among others. To implement and connect the components, a
component implementation methodology [3] has been used
that allows the system to reconfigure itself at runtime with
different configurations (set points) that allow different per-
formances and energy consumption strategies to adapt to the
environmental conditions that might be encountered during a
space mission.

III. SYSTEM ARCHITECTURE

As shown in Figure 2, the implemented system is divided
into two blocks: Space Segment and Ground Segment. The
Space Segment encompasses all the components that will be
integrated into the satellite, while the Ground Segment inte-
grates the satellite’s remote control system. Both subsystems
are connected by a radio link.

The Space Segment includes two “chains” or paths for the
video received from the cameras. The first path, at the top
of the subsystem, simply compresses a high resolution image.
Whereas, the lower path recognises a satellite in the image and
provides an image including the result of the detection. The
position of the detected satellite is used to guide the platform
towards it.

On the other hand, the Ground Segment receives these two
video streams, decompresses them and displays them on the
screen so that the user on Earth can see what is happening
in space during the mission at all times. It also receives
the system’s qualities and the directions to reach the target
satellite, so they are displayed through a graphic user interface
(GUD).

The Camera component models RGB and depth cameras.
Two cameras are used in the implementation: a high resolution
RGB camera (Caml) and a depth camera (Cam?2). This
component is in charge of capturing and processing image

frames from the cameras and sending them to the rest of the
system.

The Encoder component provides image compression, mak-
ing use of the recommended standard CCSDS122 [4]. On the
other hand, the Decoder component decompresses the image
that has been compressed by the Encoder and sends it to the
Display component to be shown to the user. An example of
the received images can be seen in Figure 3

The Recogniser component identifies satellites in the image
using an algorithm based on convolutional neural networks.
This component uses RGB and depth images to determine the
position of the target satellite. If depth imaging is available,
the component will also be able to determine how far away the
target satellite is. Combining this information, the component
defines the path that the mission satellite must follow in
order to reach the target satellite. In turn, the Satellite Pilot
component receives the commands from the Recogniser to
move the satellite accordingly.

For the development of the Recogniser component, a study
of the available algorithms for the location and detection
of objects has been carried out, concluding that the use of
Machine Learning techniques is the best way to perform
satellite recognition. Within the field of Machine Learning,
algorithms based on neural networks have been studied, and
within these, convolutional neural networks, which are the
most used for image recognition and processing.

The speed and precision of the most popular object recog-
nition models have been compared and among the two fastest,
choosing the one with the greatest precision. The chosen
model has been the SSD MobileNet v2 [5]. This model has
been trained using Tensorflow [6] for 12 hours with about 300
images of each satellite obtaining a total loss of 0.137 which
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Fig. 3. Images received in the Ground Segment

is a good result, since the ideal is that the training loss falls
between 0.2 and 0.15 for the selected model [7].

The Space Manager and Ground Manager components
communicate the satellite with the Earth segment. These
components act as multiplexers, sending various data streams
from the satellite to Earth and vice versa.

The Runtime Manager component is in charge of evaluating
the qualities of the system (power consumption, battery, etc.)
and changing its configuration according to their values.

The ControlGUI component is responsible for remote con-
trol of the system. Therefore, it provides the user with the
ability to change the system’s set point. In addition, it monitors
the qualities of the satellite that performs the mission.

A. Component connnection

Components are connected using their provided and re-
quired services. Thanks to these, the components receive and
send data to each other. In the proposed design, there are five
different service types.

o Videolnterface (VI): This service provides an RGB
image. The components that provide this service are the
Camera 1, which sends frames captured by the camera;
the Recogniser, which provides the RGB frame coming
from Camera 2 with a printed rectangle locating the
satellite if it has been identified; and both Decoder
components, which send the decompressed RGB frames
to the Display.

o Image3D (3D): This service provides an RGB frame and
a depth map frame. The only component that provides
this service is Camera 2, which is in charge of opening
and controlling the streaming pipeline of the Intel Re-
alsense [8] camera.

o VehicleControl (VC) is provided by the Recogniser
consisting of the direction orders that the Satellite Pilot
component must execute in order to reach the target
satellite.

o StreamData (SD) provides generic data packets or
blocks. The components that provide this service are
both Encoder components, which send compressed image
data; the Runtime Manager, which sends the system’s
qualities; the Space Manager, which sends the desired
setpoint; and the Ground Manager which sends the
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Fig. 4. Platform distribution of the proposed system

direction orders and system’s qualities to ControlGUI and
the coded images to both Decoder components.

+ RFLink (RL) service works exactly as StreamData. The
difference between these services is that RFLink is only
used to send and receive data packets between the Space
Manager and the Ground Manager.

IV. MAPPING TO HW PLATFORMS

There are two main platforms, one for the Space Segment,
which is an embedded system in the satellite that performs the
mission, and one for the Ground Segment, which is a PC on
Earth. The embedded system and the PC communicate via an
RF link, as shown in Figure 4.

The Space Segment can be implemented on a single plat-
form, which will be called the main platform, or have its
components distributed in several boards. The main platform
is the Jetson AGX Xavier [9] board coloured in red in Figure
5. All platforms in the Space Segment are connected to the
same switch via ethernet, as shown in Figure 5. Also, the
main platform is connected with the PC on Earth through an
RF link. Since this platform is the one that communicates the
satellite with Earth, the Runtime Manager and Space Manager
components will always be mapped to it.

The allocation of the remaining components of the Space
Segment can be modified at runtime through reconfiguration.
Components Caml and Cam2 can be implemented on two
Jetson Nano [10] platforms when they are not on the main
platform. In addition, Recogniser component can be imple-
mented on the other Jetson AGX Xavier [9] and the Satellite
Pilot on a Jetson TX2 [11]. The FPGAs are used for the HW
implementation of the Encoder components.

A. Component implementations

Each component has one or more implementations, which
can be changed at runtime through reconfiguration. Implemen-
tations may vary the used algorithm to provide the compo-
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Fig. 5. Platforms and embedded systems used in the Space Segment

nent’s functionality or simply change the platform on which
such component is implemented.

Every component in the Ground Segment has only one
implementation, while most components in the Space Segment
have more than one implementation.

The Camera component has five possible implementations,
with the first one being the default implementation:

1) Turned off. No camera is available, so the Camera
component will send a blank image.

2) RGB. This implementation manages opening an RGB
camera and capturing its video frames. Only Caml uses
this implementation.

3) RGB remote. This implementation behaves exactly as
the previous one, but it implements the Camera compo-
nent on a platform other than the main one. Only Caml
uses this implementation.

4) 3D. This implementation manages opening an Intel
Realsense [8] camera and capturing its video and depth
frames. Only Cam?2 uses this implementation.

5) 3D remote. This implementation behaves exactly as the
previous one, but it implements the Camera component
on a platform other than the main one. Only Cam2 uses
this implementation.

The Encoder component has three possible implementa-
tions, with the first one being the default implementation:

1) Software. This consists of a software implementation of
the CCSDS122 recommended standard for Space Data
Systems [4].

2) Software remote. This implementation behaves exactly
as the previous one, but it implements the Encoder
component on a platform other than the main one.

3) FPGA. Implements the hardware version of CCSDS122
standard [4] in a FPGA. An HLS process from specific
C code has been used to the this configuration.

The Recogniser and Satellite Pilot components both have
two implementations. A local implementation in the “main
platform” and a remote implementation to run these compo-
nents on another platform.

The Runtime Manager and Space Manager components
only have one implementation since they are always mapped to
the main platform and should not be implemented on another
platform.

Jetson Xavier AGX 1

RunTimeManager

Jetson Nano 1

> Encoder

Cam 1

Jetson Nano 2 SpaceManager

Cam 2 > Recognizer

SatellitePilot

Fig. 6. Configuration “s2”

B. System configurations

The system has five different configurations depending on
the distribution of the components on the different platforms
shown in Figure 5. Since all components in the Ground Seg-
ment will always be implemented in a PC, the configurations
refer to components in the Space Segment.

Configuration “s0”, or default configuration, consists of
all components being mapped to the main board. In this
configuration, both Camera components use the “Turned off”
implementation, so no image is captured.

Configuration “s1” also consists of all components being
mapped to the main board. But, in this configuration, Caml
uses its “RGB” implementation while Cam2 uses the “3D”
implementation.

In configuration “s2” both Camera components are imple-
mented remotely, each in one Jetson Nano [10] as shown in
Figure 6. Caml uses the “RGB remote” implementation and
Cam?2 uses “3D remote”.

Configuration “s3” uses the remote implementation of both
Camera components as in configuration “s2”, and the remote
implementation of the Recogniser and Satellite Pilot, as shown
in Figure 7.

Configuration “s4” uses the remote implementation of the
Camera, Recogniser and Satelite Pilot components. Both
Encoder use their FPGA implementation.

V. RECONFIGURATION ALGORITHM

The component implementation methodology proposed in
[3] has been used to develop the software components and to
allow the system to reconfigure itself at runtime. To control
system operation and reconfiguration, all components software
must implement the following functions derived from the
methodology’s library, RIE (Runtime reconfiguration Imple-
mentation of Embedded systems) [3].

e run (): Starts the component’s threads for the first time.
If the component does not use threads, nothing is done.
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e isStopped (): Checks if the component is stopped to
be able to reconfigure it.

e stop (): Stops the active threads that the component has
but it does not wait for them to have stopped. This is why
the above function is necessary.

e resume (): Restarts the threads of the component once
it has been reconfigured.

e assignSetPoint (string s): Changes the compo-
nent’s implementation.

The algorithm used to reconfigure the system follows these
steps:

1) Put the system in a safe state. By calling the
RIEstop () function, RIE accesses the stop () func-
tion of all system components to stop them. This process
might take some time because some components may
need time to complete their current task. For this reason,
the RIEisStopped () function is used, which calls
the isStopped() function of each component to
check the status of each one until all components are
in a safe state.

2) Reconfigure the system. To reconfigure the entire

system, the reconfig(string sp) function of
RIEComponent shall be called. This function takes
the name of the new configuration to which you want to
reconfigure the system must be passed to this function
as a parameter.

3) Resume execution. Once the system has been reconfig-
ured, the RIEresume () function must be called to re-
sume the tasks of the components. The RIEresume ()
function calls the resume () function of each compo-
nent.

Since the proposed system is capable of reconfiguring itself
at runtime, a reconfiguration strategy must be defined. The
defined strategy is based on the system’s latency, power
consumption, and battery life.

The system starts on configuration “s0” and after waiting 1
second switches to configuration ‘s1”. Then it checks if any
of the following scenarios is occurring.

If the system is in configuration “s1” and power con-
sumption of the main board goes above a threshold, the
configuration changes to “s2”.

If the system is in configuration “s2” and latency goes above
a threshold, the configuration changes to “s3”.

If the system is in configuration “s3” and latency goes above
a threshold, the configuration changes to “s4”.

If the system is in configuration “s4” and system’s battery
life goes below a threshold, the configuration changes to “s3”.

If the system is in configuration “s3” and system’s battery
life goes below a threshold, the configuration changes to “s2”.

If the system is in configuration “s2” and system’s battery
life goes below a threshold, the configuration changes to “s1”.

VI. EVALUATION

The latency of the proposed system has been measured
for all the possible configurations. The obtained results are
shown in Figure 9, which shows the average latency for each
configuration except for “s0”, whose latency information is
irrelevant to the performance of the system.

The component that most affects the system’s latency is the
Recogniser, since it is the one who needs more computational

Average Latency per Configuration

Latency in seconds
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Fig. 9. Average Latency per Configuration



resources. As it can be seen in Figure 9, the average latency
for configuration “s1” is around 0.55 seconds which equals
to processing 2 frames per second. In configuration “s2” the
latency increases a little due to the connection delay caused
by the remote implementation of the cameras.

For configuration “s3” the average latency is around 0.3
seconds, which means that implementing the Recogniser on
a dedicated platform decreases the system’s latency. This
platform is the Jetson Xavier AGX, which uses Tensorflow
Lite, a special version of Tensorflow [6] purposely made for
embedded systems. Configuration “s4” improves this value by
using the FPGA implementation of the Encoder components.

Reconfiguration time has also been evaluated, obtaining an
average time of 0.5742 seconds when switching configura-
tions.

VII. CONCLUSIONS

This work presents the development of an application for
space exploration using a methodology [3] that allows the
dynamic reconfiguration of the system. The purpose of the
application is the identification of decommissioned satellite
models. The system is divided into two segments, Space Seg-
ment and Ground Segment. The Space Segment is made up of
all the components that will be integrated into the satellite that
performs the mission, while the Ground Segment integrates the
satellite’s remote control system. Both subsystems would be
connected by a radio link.

In order to develop the proposed application, several archi-
tectures have been studied to select those most suitable for the
system. For the development of the Recogniser component, the
available object recognition models have been evaluated, se-
lecting the one which had the best trade off between accuracy
and speed. To implement the Encoder component, a high level
synthesis of specific C code has been carried out.

The application achieves latency times between 0.6 and 0.2
seconds, which allows the balance between latency and power
consumption. System’s power consumption can be reduced
due to the reduction of active platforms using the proposed
reconfiguration strategy. At the same time, latency can be
reduced by expanding the number of available platforms and
thus increasing the amount of computational resources for each
component.

The reconfiguration process takes an average of 0.5742
seconds. This time is small enough to not lose a significant
amount of image frames and as a consequence, not to damage
the performance of the system.
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